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Abstract

With the rapid evolution of wireless communication technologies, ensuring reliable and

efficient data transmission in high-mobility scenarios has become a critical challenge. In

particular, accurate channel estimation is essential to maintain communication quality

in environments characterized by significant Doppler effects and dynamic propagation

conditions. This thesis explores the design of waveforms for efficient sparse delay-Doppler

channel estimation in high-mobility wireless communication systems. As future wireless

networks demand robust and accurate channel estimation techniques, particularly in the

presence of high Doppler shifts, the study focuses on both on-grid and off-grid approaches

for doubly sparse linear time-varying (DS-LTV) channels.

In the first part, we investigate on-grid DS-LTV channel estimation and introduce

three different sparsity models that characterize practical propagation environments. We

propose an optimized estimation framework leveraging the minimum mean squared error

(MMSE) criterion and basis expansion models (BEMs). Through theoretical analysis

and simulations, we demonstrate that Affine Frequency Division Multiplexing (AFDM)

outperforms traditional waveforms such as Orthogonal Frequency Division Multiplexing

(OFDM) and Orthogonal Time Frequency Space (OTFS) in terms of pilot overhead

reduction and estimation accuracy.

In the second part, we extend our study to off-grid DS-LTV channel estimation,

addressing the issue of mismatches between actual Doppler shifts and predefined grid

points. By employing novel off-grid approximation techniques based on multiple shifted
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Abstract

elementary BEMs, we enhance estimation robustness and improve channel prediction

capabilities. Our findings confirm AFDM’s efficiency in handling off-grid Doppler shifts

and its potential for adaptive transmission strategies.

Beyond channel estimation, we explore the broader implications of our research

for radar and sensing applications, demonstrating the feasibility of sub-Nyquist radar

techniques that optimize sampling rates while maintaining detection accuracy. This inter-

disciplinary approach highlights the impact of our work beyond wireless communication

systems. The conclusions drawn from this research provide valuable insights for the

development of next-generation communication technologies. Future work could explore

adaptive sparsity-aware estimation techniques, machine learning-based approaches, and

real-world experimental validations to further enhance the practical deployment of AFDM

in high-mobility scenarios.
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Résumé

Avec l’évolution rapide des technologies de communication sans fil, garantir une trans-

mission de données fiable et efficace dans des scénarios de haute mobilité est devenu un

défi crucial. En particulier, une estimation précise du canal est essentielle pour maintenir

la qualité de communication dans des environnements caractérisés par des effets Doppler

significatifs et des conditions de propagation dynamiques.

Cette thèse explore la conception de formes d’onde pour une estimation efficace des

canaux parcimonieux en delai-Doppler dans les systèmes de communication sans fil à

haute mobilité. Alors que les futurs réseaux sans fil exigent des techniques d’estimation

de canal robustes et précises, en particulier en présence de forts décalages Doppler, cette

étude se concentre sur les approches sur grille et hors grille pour les canaux linéaires

temporellement variables (DS-LTV) à double parcimonie.

Dans la première partie, nous étudions l’estimation des canaux DS-LTV sur grille

et introduisons trois modèles de parcimonie différents caractérisant les environnements

de propagation pratiques. Nous proposons un cadre d’estimation optimisé exploitant le

critère de l’erreur quadratique moyenne minimale (MMSE) et les modèles d’expansion

de base (BEMs). Grâce à des analyses théoriques et des simulations, nous démontrons

que le multiplexage par division de fréquence affine (AFDM) surpasse les formes d’onde

traditionnelles telles que le multiplexage par division orthogonale de fréquence (OFDM)

et l’espace temps-fréquence orthogonal (OTFS) en termes de réduction de la surcharge

des pilotes et d’amélioration de l’exactitude de l’estimation.
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Résumé

Dans la seconde partie, nous étendons notre étude à l’estimation des canaux DS-LTV

hors grille, en abordant le problème des écarts entre les décalages Doppler réels et les

points de grille prédéfinis. En employant de nouvelles techniques d’approximation hors

grille basées sur des modèles d’expansion de base élémentaires déplacées multiples, nous

améliorons la robustesse de l’estimation et les capacités de prédiction des canaux. Nos

résultats confirment l’efficacité de l’AFDM dans le traitement des décalages Doppler hors

grille et son potentiel pour des stratégies de transmission adaptatives.

Au-delà de l’estimation de canal, nous explorons les implications plus larges de

notre recherche pour les applications radar et de détection, démontrant la faisabilité

des techniques radar sous-Nyquist qui optimisent les taux d’échantillonnage tout en

maintenant la précision de détection. Cette approche interdisciplinaire met en évidence

l’impact de notre travail au-delà des systèmes de communication sans fil.

Les conclusions tirées de cette recherche fournissent des perspectives précieuses pour

le développement des technologies de communication de nouvelle génération. Les travaux

futurs pourraient explorer des techniques d’estimation adaptatives tenant compte de

la parcimonie, des approches basées sur l’apprentissage automatique et des validations

expérimentales en conditions réelles afin de renforcer le déploiement pratique de l’AFDM

dans les scénarios de haute mobilité.
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Chapter 1

Introduction

Supporting a wide range of services and applications is the stated aim of next-generation

wireless systems (beyond 5G/6G). This involves maintaining dependable communications

in settings characterized by high mobility, like diverse automotive communications

including communications like V2X and high-speed railway systems. As wireless networks

evolve to meet these demands, one key challenge remains: how to maintain robust,

efficient, and reliable communications in highly dynamic environments where mobility

introduces rapid time variations in the propagation channel, particularly in the case of

linear time-varying (LTV) channels.

The current backbone of wireless communication, Orthogonal Frequency Division

Multiplexing (OFDM), has proven effective in stable or slowly varying environments.

OFDM is central to modern communication standards such as 4G and 5G due to its

efficient spectrum utilization in typical terrestrial communication channels [1]. However,

OFDM begins to show limitations in high-mobility contexts, particularly where Doppler

shifts, resulting from relative motion between the transmitter and receiver, significantly

affect the communication channel. In such cases, the frequency channel becomes time-

varying, leading to interference, specifically Inter-Carrier Interference (ICI), which arises

from the mismatch in frequency synchronization between transmitters and receivers.
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This interference degrades system performance and limits the effectiveness of OFDM in

high-mobility scenarios [2].

With the push towards higher frequency bands, such as millimeter-wave (mmWave)

bands, which offer vast bandwidth but are more susceptible to Doppler shifts, the

challenges for traditional OFDM systems are further exacerbated. The need for new,

more robust communication methods to handle these high-mobility, high-frequency

environments has never been more pressing [2]. However, existing methods often suffer

from high computational complexity and pilot overhead, making them inefficient in

practical deployments.

Traditional time-frequency (TF) domain-based methods for channel estimation strug-

gle to cope with these rapid variations inherent in LTV channels. These methods typically

assume slow or moderate channel dynamics, an assumption that does not hold in high-

speed, high-frequency scenarios where channel conditions can change dramatically over

short timescales. Furthermore, the need for frequent pilot signals in TF-based approaches

leads to a substantial waste of bandwidth, which could otherwise be used for transmitting

actual data. The delay-Doppler (DD) domain, on the other hand, offers a promising

alternative for channel estimation in such scenarios. In the DD domain, LTV channels

that exhibit rapid time variations appear almost stationary, simplifying the estimation

process by extending the time period over which the channel can be considered constant

[3]. However, despite this advantage, efficient channel estimation in the DD domain

remains a challenge due to the high-dimensional nature of the channel parameters.

Additionally, sparsity is a key characteristic of wireless channels that can be exploited

to reduce the amount of pilot overhead required for accurate channel estimation. In

systems operating in sub-6 GHz bands, the channel sparsity is primarily observed in the

delay domain [4, 5], where the number of significant delay taps is much smaller than the

total possible delay spread. In high-mobility scenarios, this sparsity extends into the

Doppler domain, where the number of significant Doppler shifts is also small, even for

2
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relatively high transmitter-receiver velocities.

A question thus arises as to which waveforms can offer for communications on LTV

channels both good data transmission reliability and efficient channel estimation schemes

that can take advantage of DD sparsity. To deal with high-mobility communications,

orthogonal time frequency space (OTFS) modulation has been recently proposed [6].

OTFS is a two-dimensional (2D) modulation technique that spreads the information

symbols over the delay-Doppler domain [3]. It has been proved that OTFS outperforms

OFDM in doubly selective channels [7]. However, channel estimation overhead in OTFS

cannot be reduced when the channel exhibits more sparsity (or at best it can be reduced

to a very limited extent) unless non-orthogonal pilot-data multiplexing is employed.

Indeed, one way of exploiting delay-Doppler sparsity in OTFS is according to [8] by using

a sparse superimposed pilot (SP-Sparse) scheme for channel estimation. SP-Sparse is a

non-orthogonal scheme where pilot symbols are superimposed on top of data symbols in

the transform domain of OTFS. When (the more practical) orthogonal pilot transmission

is instead maintained, the performance gap between OTFS and OFDM narrows in favor of

OFDM on channels with delay domain sparsity [9]. Another recently proposed waveform

for communications in high-mobility scenarios is Affine Frequency Division Multiplexing

(AFDM) [10, 11]. While in AFDM data and pilot symbols are not directly transmitted

in the delay-Doppler domain, AFDM can still reconstruct a DD representation of the

channel achieving full diversity on doubly dispersive channels. In the absence of DD

sparsity, AFDM has a comparable bit error rate (BER) performance to that of OTFS

but with the advantage of requiring less channel estimation overhead [10]. However, the

study of AFDM reliability and channel estimation performance under the assumption of

DD sparsity has not been investigated yet.

Therefore, in this thesis, we explore advanced waveform design strategies tailored for

sparse delay-Doppler channel estimation. Specifically, we analyze how different wave-

forms—such as OTFS, OFDM, single-carrier modulation (SCM) and AFDM—perform

3
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under varying sparsity conditions in high-mobility environments. Our objective is to

determine which waveform best exploits delay-Doppler sparsity to minimize pilot overhead

while maintaining accurate channel estimation.

Before addressing that problem, we first give in the next section some common

background material that will be useful for the remaining chapters of the thesis. This

includes a reminder on LTV channels and on AFDM—a waveform that has demonstrated

robustness in high-mobility scenarios and provides insight into practical communication

systems designed for such channels.

1.1 Background

1.1.1 Linear time-varying channels

This thesis deals mainly with waveform and pilot design solutions for wireless propagation

links that can be modeled as LTV channels that are further characterized by double

sparsity, in both their delays and Doppler components. In this section, we introduce the

mathematical representations of LTV channels. To accurately model and estimate such

channels, we adopt a probabilistic delay-Doppler representation, which provides a more

structured and intuitive framework for analyzing channel sparsity.

A LTV channel is a model of multipath propagation that is characterized by changes

in its impulse response over time, caused by Doppler frequency shifts. The received signal

at the channel output corresponding to a signal s(t) at its input is expressed as:

r(t) =

∫

τ
s(t)h(t, τ)dτ + z(t), t ∈ R, (1.1)

where z(t) is the additive white Gaussian noise process and

h(t, τ) =

Np∑

p=1

gpe
ı2πνpt∆fδ(τ − τp), (1.2)
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is the continuous-time impulse response of the channel. Here, Np ≥ 1 is the number of

paths (a random variable in general), δ(·) is the Dirac delta function, and gp, νp and τp

are the (in general random) complex gain, Doppler shift (normalized with respect to

the subcarrier spacing ∆f i.e., the frequency resolution), and delay (normalized with

respect to the sample period Ts i.e., the time resolution) associated with the p-th path,

respectively. We define

τp = lp + ιp , (1.3)

where lp ∈ J0..L − 1K is its integer part, while ιp is the fractional part that satisfies

−1
2 < ιp ≤ 1

2 . We also define

νp = qp + κp , (1.4)

where qp ∈ J−Q..QK is its integer part, while κp is the fractional part satisfying −1
2 <

κp ≤ 1
2 .

In practice, the transmitted signal s(t) is the continuous-time version of a discrete-

time signal sn ≜ s (nTs) generated (assuming a sample rate Ts) from a vector x of N

symbols (for some integer value N > 0). These symbols could be either data symbols,

pilot symbols or a combination of both. Defining rn ≜ r(nTs) and zn ≜ z(nTs), the

discrete-time version of the LTV channel model in (1.1) becomes

rn =

Np∑

p=1

gpe
ı2πνpn∆fTss(nTs − τp) + zn, n ∈ Z . (1.5)

From now on, zn ∼ CN
(
0, σ2

w

)
and the process (zn)n∈Z is modeled as independent

identically distributed (i.i.d.).

The input-output relation in (1.5), while defining the LTV model, is not sufficient to

give a rigorous sense to delay-Doppler sparsity. Such a rigorous definition of delay-Doppler

sparsity is crucial to get the kind of mathematical model of doubly-sparse (DS)-LTV

channels that can enable developing sparsity-aware waveform, pilot design, and channel
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Chapter 1. Introduction

estimation solutions and for the thorough analysis of those solutions. Indeed, while it is

tempting to associate sparsity with the value of Np being small relative to some relevant

measure, this does not correspond to many realistic wireless propagation scenarios which

are characterized simultaneously by a large value of Np and effective sparsity. This

apparent contradiction disappears when we consider that many of the Np channel paths

have in real-world scenarios delay and Doppler frequency shift values that are very close

with respect to the time and frequency resolutions of the wireless transmission. To

remedy this limitation, a rigorous double-sparsity modeling is provided in Chapter 2 and

extended in Chapter 3.

1.1.2 Affine frequency division multiplexing (AFDM)

A recently proposed waveform that can achieve robust communication performance

in high mobility scenarios is Affine Frequency Division Multiplexing (AFDM) [10, 11].

AFDM employs multiple orthogonal chirps generated using the discrete affine Fourier

transform (DAFT). With chirp parameters adapted to the channel characteristics, AFDM

can reconstruct a delay-Doppler representation of the channel, achieving full diversity on

doubly dispersive channels. In comparison with OTFS, AFDM has comparable bit error

rate (BER) performance but with the advantage of requiring less channel estimation

overhead [10].

In AFDM, modulation is achieved through the use of DAFT. DAFT is a discretized

version [12] of the affine Fourier transform (AFT) [10, 13] with chirp e−ı2π(c2k2+
1
N
kn+c1n2)

as its kernel(see Fig. 1.1), where c1 and c2 are parameters that we adjust depending on

the delay-Doppler characteristics of the channel. Consider a set of quadrature amplitude

modulation (QAM) symbols denoted {xk}k=0···N−1. AFDM employs inverse DAFT

(IDAFT) to map {xk}k=0···N−1 to {sn}n=0···N−1 as follows:

sn =
1√
N

N−1∑

k=0

xke
ı2π(c2k2+

1
N
kn+c1n2), n = 0 · · ·N − 1 (1.6)
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Figure 1.1: Time-frequency representation of three subcarriers of OFDM and AFDM
(c1 =

P
2N ). Each subcarrier is represented with a different colour.

with the following so-called chirp-periodic prefix (CPP)

sn = sN+ne
−ı2πc1(N2+2Nn), n = −LCPP · · · − 1 (1.7)

where LCPP denotes an integer that is greater than or equal to the number of samples

required to represent the maximum delay of the wireless channel. The CPP simplifies to

a cyclic prefix (CP) whenever 2c1N is integer and N is even, an assumption that will be

considered to hold from now on.

When AFDM is used for transmission on LTV channels, it has the property that a

channel path with a delay and a Doppler frequency shift equal in samples to respectively l

and q, appears in the DAFT domain as a path with an effective delay equal to −2Nc1l+q.

This particular way of mixing delays and Doppler shifts in the DAFT domain that depends

on the AFDM parameters was shown in [10] to be the key to AFDM achieving the full

diversity of LTV channels. Note that throughout this thesis we show the relevance of the

AFDM not only for achieving the full diversity of LTV channels but also for conceiving

efficient channel estimation solutions that can take advantage of the delay-Doppler

sparsity of doubly sparse linear time-varying (DS-LTV) channels.

7



Chapter 1. Introduction

1.2 Problem to solve

The problem addressed in this manuscript is the following.

1. To develop a comprehensive framework for efficient and accurate delay-Doppler

sparse channel estimation, including rigorous modeling and closed-form performance

analysis.

2. To use the developed framework to compare different wireless waveforms in terms of

sparse delay-Doppler channel estimation performance and to propose efficient pilot

schemes based on some of these waveforms capable of leveraging the delay-Doppler

sparsity of the channel.

To achieve this, we propose a mathematical representation of the channel that will

be formulated into two approximations: an on-grid and an off-grid model. The on-

grid approximation leverages a discretized delay-Doppler domain, facilitating structured

analysis and computational efficiency, while the off-grid model captures the continuous

nature of the channel in the Doppler domain, addressing inaccuracies introduced by

grid-based methods. Specifically, we propose a method for sparse channel estimation

based on an off-grid channel representation using multiple elementary basis expansion

models (BEMs). This channel representation will allow us to propose novel waveform

designs, and their related pilot schemes, that minimize channel estimation pilot overhead

while maintaining high estimation accuracy. These designs exploit the sparsity in both

the delay and Doppler domains, and closed-form asymptotic results will be derived to

quantify their associated minimal pilot overhead. Through both theoretical analysis and

numerical simulations, we will demonstrate the superiority of the proposed framework,

particularly for practical system parameters, and highlight the potential benefits of

AFDM in terms of pilot overhead reduction and estimation accuracy.

We show in the next section that while previous research has explored the potential of

exploiting delay-Doppler sparsity for channel estimation, many of its approaches rely on
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restrictive assumptions or fail to account for the full complexity of real-world propagation

environments. Specifically, existing methods either assume a grid-based discretization of

the delay and Doppler dimensions or rely on simplistic models that do not capture the

nuances of delay-Doppler sparsity. Furthermore, these approaches often fail to provide

analytical insights into the optimal pilot overhead or the performance comparison of

various waveforms under different sparsity levels.

1.3 State of the art

In this section, we provide a comprehensive overview of the background knowledge essential

for understanding the key contributions of this manuscript, summarizing existing solutions

and approaches related to the problem stated previously. We will go through the various

methods used for channel estimation, focusing on the exploitation of sparsity in the

delay and Doppler domains. This includes discussing grid-based approaches, compressive

sensing (CS) techniques, and off-grid methods, as well as their strengths and limitations

in high-mobility and high-frequency environments. By reviewing these existing strategies,

we will lay the groundwork for the novel contributions presented in this manuscript.

Sparsity plays a crucial role in wireless communication, particularly in the estimation

of LTV channels. The concept of sparsity emerges due to the limited number of dominant

scatterers contributing to signal transmission. By leveraging sparsity, advanced estimation

methods can mitigate the challenges posed by high-mobility scenarios where channel

variations are rapid and unpredictable. In wireless communication systems operating in

sub-6GHz frequency bands, sparsity is often observed in the delay domain, where only a

few dominant delay taps carry most of the channel energy [4, 5]. Channel estimation

methods leveraging this delay-domain sparsity have been proposed in various studies,

such as [14], which uses grid-based discretization of the delay dimension to enable a

compressive sensing framework. However, in high-mobility scenarios, such as vehicular or

high-speed train communications, sparsity extends to the Doppler domain as well. Also,
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in high-frequency bands, Doppler domain sparsity appears even at moderate transmitter-

receiver relative velocity values. Delay-Doppler sparsity was assumed in [15, 16] and

leveraged to conceive enhanced channel estimation schemes for time-varying channels

using the sparse Bayesian learning (SBL) framework. However, delay-Doppler sparsity

was modeled as the sparsity of a one-dimensional array with no way to assign different

sparsity levels to the delay and Doppler domains. The model in [17] also assumes a form

of delay-Doppler sparsity, where one Doppler shift is considered per delay tap, though

this assumption can be restrictive for real-world wireless propagation channels. Other

studies have explored discretized delay-Doppler representations for improved channel

estimation, highlighting the efficiency of compressive sensing techniques in capturing

the sparse characteristics of wireless channels [3, 18]. The authors of [19] use the virtual

channel representation i.e, multi-dimensional Fourier basis functions, to model multiple-

input multiple-output (MIMO) time-varying channels and introduce sparsity in the delay,

Doppler and spatial angle domains of that representation with no restriction on the

number of Doppler shifts per delay tap. Classical on-grid models assume that delay

and Doppler shifts are quantized to a predefined grid, allowing for structured sparse

recovery methods. This quantization simplifies estimation but introduces grid mismatch

errors [20], particularly in practical scenarios where the actual Doppler shifts do not

align perfectly with the assumed grid. Such mismatches degrade estimation accuracy

and necessitate advanced approaches capable of handling off-grid effects.

To overcome the limitations of strict grid-based models, off-grid channel estimation

techniques have been introduced. These methods relax the assumption of discretized

Doppler shifts, enabling more accurate modeling of real-world wireless channels. Grid

refinement techniques have been explored to mitigate the performance degradation

caused by grid mismatches. [21] presents a gridless approach for channel estimation, it

makes use of off-grid super-resolution techniques to effectively identify and reconstruct

doubly dispersive channels. Similar challenges arise in other fields, such as in microwave
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imaging [22]. In a similar vein, other papers introduce the joint recovery of signals

with a continuous double domain formulation [23, 24]. The method in [23], based on

concatenated atomic norm minimization, is particularly applicable to delay-Doppler

sparsity in systems such as radar and communication networks, where signals are sparse

in both the delay and Doppler dimensions. The proposed approach significantly improves

the recovery of signals in the presence of off-the-grid frequency components, offering

advantages over traditional separate recovery methods. [25] highlights how delay and

Doppler sparsity are critical in radar imaging, particularly for rotating targets with off-grid

scatterers. The authors in [25] propose parameter-refined orthogonal matching pursuit

(PROMP), which enhances grid refinement using a nonlinear least-squares optimization,

thus improving scatterer position and reflectivity estimation. Off-grid sparse Bayesian

learning (SBL) [26] is another solution to handle sparsity in off-grid delay-Doppler models.

This method improves the accuracy of channel estimation by partially mitigating the

discretization errors associated with grid-based methods. However, the disadvantage of

this approach lies in its computational complexity, as it involves solving optimization

problems iteratively, which can be resource-intensive and may limit its applicability in

real-time or large-scale systems. Grid refinement methods improve frequency estimation

by increasing grid resolution, but they still face limitations. Despite finer grids, they

cannot fully eliminate basis mismatch between real-world signals and the grid, leading to

residual errors in cases with off-the-grid or continuous frequency components. This is

particularly the case, as is shown in Chapter 3, when the propagation link is characterized

by a large number of “physical” channel paths contribute to each of the (refined) grid

points. A scenario that matches most of the real-world propagation environments.

Basis expansion models (BEM) can in principle offer an alternative to grid refinement.

Based on the BEM approach in [27, 28], the off-grid channel model demonstrates sparsity

in the delay domain, but this sparsity does not extend to the Doppler domain. The

approach in [27, 29] employs one BEM for each delay tap to capture channel variations,
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without making any assumptions about sparsity in the Doppler domain. Similar to

this, [30, 31] introduces channel estimation scheme for OFDM systems over a doubly

selective channel leveraging compressive sensing and BEM and exploiting only delay

domain sparsity. These approaches fails to exploit both delay and Doppler domain

sparsity simultaneously, leading to inefficiencies in modeling complex, dynamic channels.

Resorting to BEM schemes aligns with the work in [32], which explores off-grid channel

estimation for OTFS systems with fractional delay and Doppler shifts. While the paper

addresses channel estimation in the delay-Doppler domain, it does not fully exploit DD

sparsity to achieve pilot overhead reduction.

As for the issue of waveform performance comparison under sparsity assumptions,

the work in [9] compares OFDM and OTFS under delay-Doppler sparsity in terms of

the pragmatic capacity i.e., the mutual information of the virtual channel having at

its input the constellation symbols excluding the pilot and guard symbols and at its

output the detector soft-outputs. While this overhead-aware comparison constitutes a

step forward, the restrictive sparsity model does not allow to do the comparison under

realistic propagation conditions nor to devise pilot patterns with adjustable time and

frequency densities for different delay-Doppler sparsity levels. Nonetheless, such works

point towards the fact that some waveforms are more suited to take advantage of delay-

Doppler sparsity than others. For instance, channel estimation overhead in OTFS cannot

be significantly reduced when the channel exhibits more sparsity unless non-orthogonal

pilot-data multiplexing is used as in [8]. For such a scheme, sparsity in the channel

delay-Doppler response lessens inter-pilot and pilot-data interference. However, the use

of iterative detection methods becomes necessary which not only makes this approach

require high computational complexity but also makes it prone to error propagation. We

thus restrict our work in this thesis to the case of orthogonal resources for pilot and data

symbols.
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1.4 Contribution

This thesis begins with a comprehensive overview in Chapter 1, establishing the founda-

tional knowledge necessary to understand the research contributions presented in this

manuscript. Following this, the key contributions of this work are outlined, with each

subsequent chapter expanding upon these advancements.

1. Chapter 2: Estimation of doubly sparse linear time-varying channels with the

on-grid approximation. This chapter introduces the concept of DS-LTV channels,

focusing on the on-grid modeling of delay-Doppler sparsity. The on-grid approach

assumes strict alignment with a predefined grid, simplifying analysis and practical

implementation. Three distinct delay-Doppler sparsity models—Type-1, Type-2,

and Type-3—are presented, capturing key characteristics of high-mobility and high-

frequency wireless communication environments. Furthermore, this chapter derives

statistical properties of the minimal pilot overhead required for reliable channel

estimation. Using these statistical findings, closed-form asymptotic results are

obtained for the average minimal pilot overhead and the mean squared error (MSE)

of four different waveforms. The results analytically demonstrate the superiority of

Affine Frequency Division Multiplexing (AFDM) in minimizing pilot overhead while

maintaining accurate channel estimation. Numerical simulations validate these

theoretical findings, confirming their relevance for practical transmission settings.

2. Chapter 3: Estimation and extrapolation of doubly sparse linear time-varying

channels with off-grid Doppler shifts. This chapter extends the analysis to off-grid

models, where Doppler shifts do not align perfectly with a predefined grid. A

novel off-grid approximation method is proposed, leveraging basis expansion models

(BEMs) to enhance channel estimation accuracy. The impact of off-grid Doppler

shifts on estimation performance is studied, and techniques for extrapolating

sparse delay-Doppler channels are introduced. The findings demonstrate significant
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improvements in estimation robustness and predictive capabilities, which are critical

for high-mobility communication scenarios.

3. Chapter 4: Further applications. This chapter explores the broader applications of

delay-Doppler sparsity beyond wireless communications. It examines its potential

benefits in radar and sensing applications, particularly in sub-Nyquist radar systems,

where it enables reduced sampling rates and hardware complexity while enhancing

target detection and estimation.

The relation between the chapters and the publications is as identified in Table 1.1.
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Table 1.1: Publications and their contributions to the chapters.
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Chapter 2

Estimation of Doubly Sparse Linear

Time-Varying Channels with the

On-grid Approximation.

This chapter begins by discussing on-grid delay-Doppler double sparsity, where channel

components align with a predefined grid, simplifying DS-LTV channel modeling. The

chapter then explores estimation techniques for known delay-Doppler profiles, comparing

SCM, OFDM, and AFDM in terms of minimal pilot overhead required by different wave-

forms to achieve identifiability or a target error performance. Next, it addresses unknown

delay-Doppler profile (DDP) using compressed sensing, introducing hierarchical sparsity

and recovery algorithm HiHTP. Finally, numerical results highlight AFDM’s efficiency

in minimizing pilot overhead while maintaining estimation accuracy, demonstrating its

advantages over other waveforms in DS-LTV channel estimation.
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Chapter 2. Estimation of On-grid DS-LTV Channels

2.1 On-grid doubly sparse linear time-varying channels

In a first approximation, we assume that both ιp and κp are zero and we define L ≜

max
p=1···Np

τp
Ts

+ 1. Then the discrete-time LTV input-output model in (1.5) becomes

rn =

L−1∑

l=0

sn−lhl,n + zn, n ∈ Z . (2.1)

The input-output relation in (2.1) defines an on-grid LTV channel with a L− 1 maximum

delay shift with the complex gain hl,n of the l-th path varying with time index n as

hl,n =

Np∑

p=1

gpe
ı2π qn

N δl−lp , l = 0 · · ·L− 1 . (2.2)

Under this assumption, we define gp as:

gp = αlp,qpIlp,qp , (2.3)

where Il,q is given by:

Il,q =





1 if ∃p such that (l, q) = (lp, qp),

0 otherwise.

(2.4)

The number of paths Np, as defined in equation (1.2), can now be expressed as:

Np =
L−1∑

l=0

Q∑

q=−Q

Il,q (total # paths in the on-grid model) (2.5)

Here, Il,q for any l and q is a binary random variable that, when non-zero, indicates

that a channel path with delay l, Doppler shift q and complex gain αl,q is active and

contributes to the channel output. Note that the distribution of the random variables
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{Il,q}l,q controls the kind of sparsity the LTV channel might have. The complex gain is

assumed to satisfy αl,q ∼ CN
(
0, σ2

α

)
with σ2

α satisfying the channel power normalization

L−1∑

l=0

Q∑

q=−Q

E
[
|αl,q|2 Il,q

]
= 1 . (2.6)

Definition 2.1.1 (On-grid Delay-Doppler double sparsity, [33]). The complex gain hl,n of

the l-th path of the LTV channel varies with time as

hl,n =

Q∑

q=−Q

αl,qIl,qe
ı2π nq

N , l = 0, . . . , L− 1, (2.7)

and there exist 0 < pd, pD < 1 such that

Il,q = IlI
(l)
q , ∀(l, q) ∈ J0 ..L− 1K × J−Q..QK, (2.8)

where Il ∼ Bernoulli(pd) and I
(l)
q ∼ Bernoulli(pD). Moreover, Il,q and αl,q are indepen-

dent.

Fig. 2.1 illustrates three different delay-Doppler sparsity models, fully described in

[33] and dubbed Type-1, Type-2 and Type-3, that all fall under the scope of Definition

2.1.1 each with an additional different assumption on Il and I
(l)
q . Here, we just point out

that the difference between Type-2 and Type-3 of Figures 2.1b and 2.1c, respectively,

is that in the latter the active Doppler bins per delay tap appear in clusters of random

positions but of deterministic length as opposed to the absence of clusters in the former.

The case where the delay taps have all the same (random) sparsity (as in Type-1 models

of Fig. 2.1a) also falls under Definition 2.1.1 by setting I
(l)
q = I

(0)
q ,∀l.

The above models are not exhaustive. For instance, block sparsity can be extended

to the delay domain. Furthermore, each model can be extended by removing the on-grid

approximation. In that case, Il,q will only represent the closest grid point in the delay-

Doppler domain to a channel path instead of representing the path itself. Nonetheless,
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Figure 2.1: Examples of channels satisfying the 3 types of delay-Doppler sparsity

the three models capture important features of wireless channels in high-frequency bands

that are subject to user mobility.

Note that under Definition 2.1.1, sd ≜ E [
∑

l Il] = pdL is the mean number of active

delay taps in the delay-Doppler profile of the channel and can be thought of as the delay

domain sparsity level while sD ≜ E
[∑

q I
(l)
q

]
= pD(2Q+ 1) is the mean number of active

Doppler bins per delay tap and can be thought of as the Doppler domain sparsity level.

To ensure sparsity in a stronger sense i.e., with high probability (as L,Q,Lpd, (2Q+

1)pD grow), we require that the following assumption hold.

Assumption 2.1.1. {Il}l=0···L−1 are mutually independent. Also, random variables
{
I
(lt)
qt

}
t=1···T

are mutually independent for any (l1, q1), . . . , (lT , qT ) (T ≤ min(l, 2Q+1)) such that ls ̸= lt

and qs ̸= qt whenever s ̸= t. Moreover, the complementary cumulative distribution func-

tion (CCDF) FSD,l
(m) of the random variable SD,l ≜

∑Q
q=−Q I

(l)
q for any l ∈ J0 ..L− 1K

is upper-bounded for any integer m > (2Q+ 1)pD by the CCDF of B (2Q+ 1, pD).

The CCDF upper bound condition in Assumption 2.1.1 is not arbitrary. Indeed,

Type-1 and 2 models easily satisfy it simply by requiring that {I(0)q }q in the first

and {I(l)q }q for any l in the second to be mutually independent (and to thus satisfy

FSD,l
(m) = FB(2Q+1,pD)(m),∀m). For Type-3 models, SD,l is deterministic and hence

its CCDF is trivially upper-bounded. As the following lemma rigorously shows, the

mutual independence of {Il}l=0···L−1 in Assumption 2.1.1 guarantees strong delay domain
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sparsity while Doppler sparsity is guaranteed in a more explicit manner by the CCDF

upper bound.

2.2 Waveform definitions

In this section, we define the waveforms used for estimation in subsequent sections. For

that sake, let s be the N -long vector of samples sn at the input of the channel. Define x

as the vector of data symbols and embedded channel estimation pilots, which modulate

the waveform in use to produce the time-domain samples vector s. For all the considered

waveforms, we can write the dependence of s on x using a modulation matrix Φtx

s = Φtxx . (2.9)

For single-carrier modulation (SCM), Φtx = IN . For AFDM, Φtx = ΛΛΛc2FNΛΛΛc1,

with ΛΛΛc = diag(e−ı2πcn2
, n = 0, . . . , N − 1) and FN being the N -order discrete Fourier

transform (DFT) matrix. For an OFDM grid as the one shown in Figure 2.3 composed

of Ns symbols each having Nfft sub-carriers and a cyclic prefix of length Ncp, Φtx =

blkdiag
(
TcpF

H
Nfft

, . . . ,TcpF
H
Nfft

)
with Tcp =



0, INcp

INfft,Nfft


 being the matrix for cyclic prefix

insertion. For OTFS, Φtx = FH
Motfs

⊗ INotfs
.

At the receiver, let r be the N -long vector of the channel output samples rn defined in

(2.1). Depending on the waveform employed, the receiver applies a demodulation matrix

Φrx to produce the vector of transform domain samples y. For both SCM and AFDM,

Φrx = ΦH
tx. For the OFDM grid of Figure 2.3, Φrx = blkdiag (FNfft

Rcp, . . . ,FNfft
Rcp)

and Rcp = [0, INfft
] is the matrix for cyclic prefix removal. For OTFS, Φrx = ΦH

tx.

Let P ⊂ J0..N − 1K designate the indexes of the received samples associated with Np

transform domain pilots, of values {pp}p=1···Np inserted at indexes {mp}p=1···Np
within

the vector x and each surrounded with a waveform-dependent number of zero guard
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Tx Frame in time domain:

d . . . d 0 0 0 p1 0 0 0 d d . . . d d 0 0 0 p2 0 0 0 d d d . . . d d d 0 0 0 pNp 0 0 0 d . . . d

L− 1

Figure 2.2: An example of a SCM frame composed of data samples and pilot symbols,
each of the latter surrounded by 2L− 1 guard samples.

Tx Frame in time-frequency domain:

d
...
d

d
...
...
d

d
...
d

d
...

d
...
...
d

...
d

d
...

d
...
...
d

...
d

. . .

d
...

d
...
...
d

...
d

d
...
d

d
...
...
d

d
...
d

pmt,1Nfft+mf,1

pmt,1Nfft+mf,Np,f

pmt,2Nfft+mf,1

pmt,2Nfft+mf,Np,f

pmt,Np,tNfft+mf,1

pmt,Np,tNfft+mf,Np,f

Figure 2.3: OFDM frame with pilot (blue), guard (light blue and red) and data (red)
subcarriers. Each symbol is preceded by L− 1 CP samples (light red)

samples (see Figures 2.2, 2.3 and 2.5).

For SCM,

P =

Np⋃

p=1

Jmp ..mp + L− 1K. (SCW) (2.10)

As for OFDM, let mpt ∈ J0..Ns − 1K be the time domain position of the p-th pilot and

mpf ∈ J0 ..Nfft − 1K be its frequency domain position. Then

P = {mp = mt,ptNfft +mf,,pf}pt=1···Np,t,
pf=1···Np,f

, Np = Np,tNp,f , (OFDM) (2.11)

For OTFS, the set P is the vectorized form of the Frame shown in Figure 2.4.

While for AFDM, it holds [34] that

yk =

L−1∑

l=0

Q∑

q=−Q

αl,qIl,qe
ı2π(c1l2−ml

N
+c2(m2−k2))xk + wk ,

m ≜ (k − q + 2Nc1l)N .

(2.12)

The samples related to the p-th pilot symbol thus occupy 2N |c1|(L − 1) + 2Q + 1

22



Chapter 2. Estimation of On-grid DS-LTV Channels

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

p

2L− 1

4Q
+
1

L

2
Q

+
1

Delay Index

D
op

p
le
r
In
d
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Figure 2.4: An OTFS symbol composed in the Zak domain of data samples (red), a pilot
sample (blue) and guard samples (light blue and red)

Tx Frame in DAFT domain:

d . . . d 0 0 0 0 0 0 p1 0 0 0 0 0 0 d d d . . . d d d 0 0 0 0 0 0 pNp 0 0 0 0 0 0 d . . . d

Q 2N |c1|(L− 1) +Q

Figure 2.5: AFDM symbol composed of data samples, Np pilot symbols and their guard
samples.
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DAFT domain indexes. More precisely, and in case c1 is negative,

P =

Np⋃

p=1

Jmp −Q..mp + 2N |c1|(L− 1) +QK. (AFDM) (2.13)

2.3 Channel estimation with known delay-Doppler profile

This section focuses on on-grid channel estimation in time-varying communication systems,

where Doppler shifts align with the predefined discrete grid. In this scenario, the channel

is modeled under the assumption that Doppler shifts are exactly represented by the

grid points, which simplifies the estimation process. The section presents techniques for

estimating channel coefficients by leveraging pilot symbols and applying minimum mean

squared error (MMSE) estimation considering that the knowledge of the delay-Doppler

profile (DDP) i.e., of {Il,q}l=0···L−1,q=−Q···Q, at the receiver side is assumed. This bears

similarities with the knowledge of the power delay profile (PDP) for linear time-invariant

(LTI) channel estimation [35]. The performance of on-grid channel estimation is also

analyzed, with numerical results demonstrating its effectiveness in achieving accurate

and reliable estimates, while maintaining lower computational complexity due to the grid

alignment.

2.3.1 Estimation of DS-LTV channels with known DDP using different wave-

forms

We now turn our attention to the estimation of the DS-LTV channel using practical

waveforms and embedded pilots.

Let αddp ≜ [αl,q](l,q)s.t.Il,q=1 designate the vectorized form of the unknown channel

gains associated with active delay-Doppler components such that α = Aααddp (αddp

being the restriction of the vector α to the DDP support) . For any of the above

waveforms, let yp ≜ [yk]k∈P be the vector of received pilot samples. Inserting (2.7) and

24



Chapter 2. Estimation of On-grid DS-LTV Channels

(2.9) into (2.1) gives the following signal model for recovery the vector αddp

yp = APMAα︸ ︷︷ ︸
≜Mp

αddp +wp (2.14)

where xp is a vector of the same length as x with entries equal to p1, . . . , pNp at indexes

{mp}p=1···Np
and to zero elsewhere, wp are the corresponding noise samples and the

matrix M is a N × L(2Q+ 1) partitioned matrix expressed as

M =

[
[γ0,−Q . . . γ0,Q] . . . [γL−1,−Q . . . γL−1,Q]

]
(2.15)

with the columns of M being given as

γl,q =

M∑

i=1

pi

[
Φrx∆qΠ

lΦH
tx

]
kpi

. (2.16)

Here, AP is the |P|×N matrix that chooses from the transform domain received vector the

entries corresponding to P . Aα is the matrix that augments αddp with zeros corresponding

to Il,q = 0 resulting in a L(2Q+1)-long vector Aααddp. ∆q = diag(eı2πqn, n = 0 · · ·N−1),

Π is the N -order permutation matrix.

The minimum mean squared error (MMSE) estimate, α̂ddp, of αddp based on yp is

given by [36]

α̂ddp = σ2
α(σ

2
αM

H
pMp + σ2

wI)
−1MH

p yp . (2.17)

For any (l, q) satisfying Il,q = 1, define α̂l,q as the corresponding entry of vector α̂ddp.

For any (l, q) ∈ J0 ..L− 1K × J−Q..QK such that Il,q = 0, set α̂l,q = 0. Finally, define

ĥl,n ≜
∑Q

q=−Q α̂l,qIl,qe
ı2π nq

N , n = 0, . . . , N − 1 . (2.18)

as the resulting MMSE estimate of hl,n. In what follows, we give indications on how

to set Np and c1 based on the delay-Doppler sparsity level of the channel so that the
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minimal pilot overhead needed to guarantee a vanishing (with respect to an increasing

signal-to-noise ratio (SNR)) mean squared error (MSE) E[
∑L−1

l=0
1
N

∑N−1
n=0 |hl,n − ĥl,n|2] =

E[∥α̂ddp −αddp∥2].

2.3.2 AFDM parameters setting for transmission over DS-LTV channels

In the case of AFDM, thanks to these zero guard samples, the amplitude of the pilot

symbols can be boosted as follows without violating the (time domain) transmit power

constraint:

|pi| =
√
2|c1|N(L− 1) + 2Q+ 1, i = 1 · · ·M . (2.19)

Let u
(l,q)
m (m ∈ Z) be the individual DAFT domain impulse response of the part of

the channel associated with delay-Doppler component αl,q. Since J0 ..L− 1K × J−Q..QK

in the delay-Doppler domain maps to an interval in the DAFT domain that is either

J−Q..2|c1|N(L− 1) +QK if c1 is negative or J−Q− 2|c1|N(L− 1)..QK if c1 is positive,

the latter interval is the support of u
(l,q)
m . We designate by DAFT domain representation

of the channel the collection {u(l,q)m }(l,q)∈J0..L−1K×J−Q..QK of all individual DAFT domain

impulse responses. Figure 2.6a shows the DAFT domain representation of a channel in the

case c1 = −1
2N while Figure 2.6b shows that representation when c1 = −2

2N . In what follows

we restrict c1 to be negative without loss of generality. Define the random variable Xk ≜

|{(l, q) ∈ J0 ..L− 1K × J−Q..QK, Il,q = 1, q − 2c1Nl = k}| for any k ∈ J−Q..2|c1|N(L −

1) +Q + 1K, i.e., Xk is the number of non-zero components αl,q appearing at index k

in the DAFT domain representation. It is also the number of terms in the mixture of

complex sinusoids that constitute the sample yk in (2.12) and is thus closely related to

pilot overhead and channel estimation performance. For instance, under a given channel

realization, the minimal number of DAFT domain pilots needed for full identifiability

i.e., for the measurement matrix Mp in (2.22) to have full column rank, should be at

least equal to max
k∈J−Q..2|c1|N(L−1)+Q+1K

Xk. We will also show that the distribution of Xk

affects directly the MSE of α̂ddp. This is why we examine in what follows that probability
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DAFT Domain

|αp,q|

−Q 0 L− 1 L+Q

(a) c1 = −1/2N

DAFT Domain

|αp,q|

−Q 0 L− 1 2L+Q− 1

(b) c1 = −2/2N

Figure 2.6: DAFT domain representation of the channel realization of Figure 2.1b for
different values of c1

distribution. First, by referring to the signal relation in (2.12) we can see that with

“enough” sparsity i.e., if the number of nonzero channel components is sufficiently smaller

than the support J−Q..2|c1|N(L−1)+Q+1K of the channel DAFT domain representation,

it is unlikely that Xk takes large values and hence it is unlikely that a large number of

DAFT domain pilots would be needed to get a target estimation error performance. This

can be seen from Figure 2.6 where max
k

Xk = 3 when |c1| = 1
2N and max

k
Xk = 1 when

|c1| = 2
2N . The following lemma and the ensuing theorem give a rigorous confirmation of

the above intuition.

Lemma 2.3.1. For c1 = − P
2N (P ∈ N∗) and any k ∈ J−Q..2|c1|N(L − 1) + QK the

complementary cumulative distribution function (CCDF) of Xk under Assumption 2.1.1
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is upper bounded by the CCDF of B((2⌈QP ⌉+ 1, pdpD).

Proof. The proof of Lemma 2.3.1 is provided in Appendix A.1.

For tractability and more insights, the asymptotic regime for N,L,Q defined by the

following assumption will be helpful. Note that the numerical results given in Section

2.3.3 are not asymptotic but are obtained with finite values of N,L,Q.

Assumption 2.3.1. L = O(K), Q = O(K), sd = O (Kκd) and sD = O (KκD) for some

κd, κD ∈ [0, 1).

Remark 1. Assuming L = O(K) and Q = O(K) implies that N = O
(
K2
)
. Indeed,

assuming that the maximum delay L increases to infinity as K implies that the transmission

bandwidth increases at the same rate. Also, assuming that the maximum Doppler shift

Q increases as K implies that the transmission duration increases at the same rate.

Therefore, the frame size in samples i.e., N , increases as K2.

Theorem 2.3.1. Under Assumption 2.3.1 and Assumption 2.1.1, if we set P s.t. (L−1)P+

2Q+1 = O(sdsD) then DAFT domain pilot overhead needed for the MSE E[∥α̂ddp−αddp∥2]

to tend to zero as K → ∞ and σ2
w → 0 is O (Kκd+κD logK).

Proof. A sketch of the proof is given in Appendix A.2.

Remark 2. Theorem 2.3.1 implies that AFDM is order-optimal in terms of channel

estimation overhead for DS-LTV channels since the total overhead needed for vanishing

channel estimation MSE has the same asymptotic order (up to a logarithmic term) as the

smallest possible overhead which is equal to the average number of unknowns and thus to

E [|{(l, q) ∈ J0..L− 1K × J−Q..QKs.t.Il,q = 1}|] = sdsD = O
(
Kκd+κD

)
. (2.20)

This optimality of AFDM is confirmed by the comparison done in the following section

of its channel estimation overhead and channel estimation error performance to that

required by OFDM, OTFS and SCM.
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2.3.3 Numerical results

In this section, we compare the channel estimation performance of AFDM and OFDM

for DS-LTV channels, focusing on both the MSE and pilot overhead. We present results

that highlight the advantage of AFDM in terms of reduced overhead, particularly when

channel sparsity is high, and further discuss its optimal performance in terms of diversity

order and error performance compared to OFDM, SCM, and OTFS.

In Figure 2.7, the channel estimation MSE of AFDM and OFDM are compared. The

simulations used 100 realizations of channels with a type-1 delay-Doppler sparsity, with

parameters set to N = 8192, L = 60, Q = 15 (corresponding to a 12 MHz transmission at

a 70 GHz carrier frequency, a relative moving speed of 340 km/h, and a delay spread of 5

µs) and pd = 0.2. In the solid lines, the number of AFDM pilots Np and OFDM pilots

Np,t were chosen for each channel realization above Npmin and Np,tmin, respectively, to

achieve a 10−3 MSE at SNR = 20 dB. The dashed line represents the MSE of OFDM

when Np,t is reduced to match the pilot overhead of AFDM. As stated in Theorem 2.3.1,

AFDM with P = 1 exhibits the lowest overhead, with E[Np] = 7, as shown in Figure 2.7a

where pd = 0.2. Similarly, AFDM with P = 2 and E[Np] = 7 is observed in Figure 2.7b

for pd = 0.3. This confirms the results stated in Remark 2, which implies that AFDM is

order-optimal in terms of channel estimation overhead for DS-LTV channels.

In Figure 2.8, the average pilot overhead needed to achieve the target MSE is plotted

for different values of pd while pD = 0.2. As expected, the gain with respect to OFDM,

SCM, and OTFS is the largest when sparsity is the highest. When there is no sparsity (pd

close to 1), performance measures other than pilot overhead can be used, such as diversity

order or channel delay-Doppler components separability. AFDM has been shown to

achieve the optimal diversity order of LTV channels [10] in the general case, irrespective

of sparsity.
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Figure 2.7: MSE performance for N = 8192, L = 60, Q = 15, p = 0.2.

2.4 Channel estimation with unknown delay-Doppler profile

In this section, the estimation of DS-LTV channels is analyzed under the assumption

of an unknown delay-Doppler profile and an on-grid model. A hierarchical sparsity

framework is used to apply compressed sensing techniques, with theoretical guarantees

provided via the hierarchical restricted isometry property (HiRIP). Different waveforms,

including OTFS, OFDM, and AFDM, are compared, demonstrating AFDM’s superiority

in reducing pilot overhead while maintaining estimation accuracy.

30



Chapter 2. Estimation of On-grid DS-LTV Channels

0.1 0.15 0.2 0.25 0.3 0.35 0.4

pd

1000

2000

3000

4000
O
ve
rh
ea
d
(s
am

p
le
s)

OTFS
SCM
OFDM
AFDM (P = 1 or P = 2)

Figure 2.8: Channel estimation overhead for a target MSE = 10−3 at SNR = 20 dB for
N = 8192, L = 60, Q = 15, pD = 0.2

2.4.1 Relation to hierarchical sparsity

Definition 2.4.1 (Hierarchical sparsity, [37]). A vector x ∈ CNM is (sN , sM )-sparse if it

consists of N blocks of size M , sN of which at most are non-zero, and each non-zero

block is sM -sparse.

To analyze hierarchically sparse recovery schemes, a modified version of the restricted

isometry property (RIP) called the hierarchical RIP (HiRIP) was proposed in the litera-

ture.

Definition 2.4.2 (HiRIP, [37]). The HiRIP constant δsN ,sM of a matrix A is the smallest

δ ≥ 0 such that for all (sN , sM )-sparse vectors x ∈ CNM

(1− δ) ∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ) ∥x∥2 (2.21)

DS-LTV sparsity is probabilistic while hierarchical sparsity of Definition 2.4.1 is

deterministic. The two models are nonetheless related under Assumption 2.1.1.

Lemma 2.4.1. With probability 1 − e−Ω(min((2Q+1)pD,Lpd)), α is (sd, sD)-sparse under

Assumption 2.1.1.

Proof. The proof of Lemma 2.4.1 is provided in Appendix A.3
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Algorithm 2.4.1 HiHTP for compressive sensing of DS-LTV channels

1: Input: Mp, yp, maximum number of iterations kmax, sd, sD
2: α̂(0) = 0, k = 0
3: repeat
4: Ω(k+1) = Lsd,sD

(
α(k) +MH

p

(
yp −Mpα

(k)
))

5: α(k+1) = argmin
{
∥yp −Mpz∥ , sup (z) ⊂ Ω(k+1)

}

6: k = k + 1
7: until k = kmax or Ω(k+1) = Ω(k) (whichever earlier)
8: Output: (sd, sD)-sparse α̂(k).

2.4.2 Compressed-sensing estimation of DS-LTV channels using different wave-

forms

For any of the above waveforms (see Figures 2.2, 2.3, 2.4, 2.5), let yp ≜ [yk]k∈P be the

vector of received pilot samples. Inserting (2.7) and (2.9) into (2.1) gives the following

signal model for recovery of the hierarchically sparse (per Lemma 2.4.1) vector α

yp = APM︸ ︷︷ ︸
≜Mp

α+wp (2.22)

where M and AP are defined in (2.14). Hierarchical hard thresholding pursuit

(HiHTP) [37] has been suggested in the literature for solving hierarchically-sparse recovery

problems. When applied to Problem (2.22) it gives Algorithm 2.4.1.

HiHTP is a modification of the classical hard thresholding pursuit (HTP) [38] by

replacing the thresholding operator employed at each iteration of HTP with a hierarchically

sparse version Lsd,sD . To compute Lsd,sD(x) for a vector x ∈ CL(2Q+1) first a sD-sparse

approximation is applied to each one of the L blocks of x by keeping in each of them the

largest sD entries while setting the remaining ones to zero. A sd-sparse approximation

is next applied to the result by identifying the sd blocks with the largest l2-norm. The

following theorems give the conditions guaranteeing the convergence of Algorithm 2.4.1

and the recovery of α.

Theorem 2.4.1 (HiRIP for SCM and OFDM based measurements). Under Assump-
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tion 2.1.1 and for sufficiently large L, Q, sufficiently small δt, sufficiently small δf ,

Np,t > O
(

1
δ2t

log2 1
δt
log sD

δt
sD log(2Q+ 1)

)
and Np,f > O

(
1
δ2f

log2 1
δf
log sd

δf
sd logL

)
, if

Φtx = Φrx = IN and P = P (Np,t) is defined by (2.10) then the HiRIP constant

δsd,sD of matrix Mp satisfies δsd,sD ≤ δt with probability 1− e
−Ω

(
logL log

sD
δt

)
. If Φtx =

blkdiag
(
TcpF

H
Nfft

, . . . ,TcpF
H
Nfft

)
, Φrx = blkdiag (FNfft

Rcp, . . . ,FNfft
Rcp) and P = P (Np,t, Np,f)

is defined by (2.11) then the HiRIP constant δsd,sD of matrix Mp satisfies δsd,sD ≤

δt + δf + δtδf with probability 1− e
−Ω

(
min

{
logL log

sd
δt

,log (2Q+1) log
sD
δf

})
.

Proof. The proof of the theorem is given in Appendix A.4.

Theorem 2.4.2 (HiRIP for AFDM based measurements). Assume Φtx = ΛΛΛc2FNΛΛΛc1 = ΦH
rx,

|c1| = P
2N and let P be set as the smallest integer satisfying (L− 1)P + 2Q+ 1 ≥ sdsD

and P = P (Np) be defined by (2.13). Then under Assumption 2.1.1 and for sufficiently

large L, Q, sufficiently small δ, and Np > O
(

1
δ2

log2 1
δ log

log(LP )
δ log(LP ) log Q

P

)
, the

HiRIP constant δsd,sD of matrix Mp defined in (3.14) satisfies δsd,sD ≤ δ with probability

1− e
−Ω

(
log (2⌈Q

P
⌉+1) log log(LP )

δ

)
.

Proof. The proof of the theorem is given in Appendix A.5.

When P ≜ 2N |c1| is set to 2Q + 1, AFDM achieves full diversity [10] and the

measurements are non-compressive. The setting P = 1 on the other hand is the most

compressive. By choosing for P a value between these two extremes as in the statement

of the theorem, each pilot instance gives in its (L− 1)P + 2Q+ 1-long guard interval a

number of measurements close with high probability to the number sdsD of unknowns.

Of course, a number Np > 1 of pilot instances is still required as the sparsity support

needs to be estimated. But, asymptotically, this number has only a logarithmic growth

with respect to both delay and Doppler spreads. This property is to be contrasted with

the SCM and OFDM HiRIP result showing first-degree polynomial dependence of Np on

sd or sD as stated by Theorem 2.4.1.
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Corollary 2.4.1 (Recovery guarantee for compressive sensing of DS-LTV channels). If Mp

satisfies the conditions of Theorems 2.4.1 or 2.4.2, the sequence α̂(k) defined by Algorithm

2.4.1 satisfies ∥α̂(k) − α∥ ≤ ρk∥α(0) − α∥ + τ ∥wp∥ where ρ < 1 and τ are constants

defined in [37, Theorem 1].

Proof. Thanks to Theorems 2.4.1 and 2.4.2, matrix Mp with large enough L,Q,Np can

be made to have a HiRIP constant that satisfies δ3sd,2sD < 1√
3
. The conditions of [37,

Theorem 1] are thus satisfied, and the corollary follows from that theorem.

2.4.3 Numerical results

In this section, we compare the sparse recovery performance of AFDM with that of

OFDM and OTFS, focusing on pilot overhead and MSE. The simulations assess the

effectiveness of each waveform in achieving target MSE performance while minimizing

the required pilot resources.

AFDM sparse recovery performance is now compared to that of OFDM and OTFS. For

OFDM, transmission is organized in N -long frames, each constructed from Ns ≈ 2Q+ 1

OFDM symbols each of which costing L− 1 in CP overhead. Within each frame, Np,f

subcarriers within Np,t OFDM symbols are set as pilots [33]. As for OTFS, subcarriers

are in the delay-Doppler domain forming a Motfs × Notfs grid (with MotfsNotfs = N).

OTFS with orthogonal data-pilot resources [39] requires at least Np,otfs = 1 pilot symbols

with min(4Q+ 1, Notfs)min(2L− 1,Motfs) guard samples.

We used 100 realizations of channels having a Type-1 delay-Doppler sparsity with

pd = 0.2, pD ∈ {0.2, 0.4} and N = 4096, L = 30, Q = 7 (corresponding to a 30 MHz

transmission at a 70 GHz carrier frequency, a maximum target moving speed of 396

km/h and a maximum target range of 300 meters). For both AFDM and OFDM, sparse

recovery of α is done using HiHTP (Algorithm 2.4.1). For OTFS, since sensing is

done without compression, non-compressive estimation algorithms can be used [10]. For

each waveform, the number of pilots was set in such a way that the mean squared error
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MSE ≜ E[∥α̂−α∥2] is approximately 10−4 at SNR = 20 dB. Fig. 2.9 shows an advantage

of AFDM in terms of pilot overhead i.e., the number of samples in each frame needed as

pilots and guards to achieve the target MSE performance.
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(a) pD = 0.2
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Figure 2.9: MSE and pilot overhead for N = 4096, L = 30, Q = 7, pd = 0.2, Ns =
16, Notfs = 16,Motfs = 256.

2.5 Conclusion

This chapter explored channel estimation for doubly dispersive wireless links that are

sparse in both the delay and the Doppler domains. A special focus was given to
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the minimal pilot overhead required by different waveforms to achieve a target error

performance while solving that problem. AFDM was shown to be optimal with respect to

that performance measure when compared to OFDM and OTFS using both mathematical

analysis and numerical results. In the case of an unknown DDP, DS channel has been

recovered by linking delay-Doppler sparsity to the paradigm of hierarchically-sparse

recovery. Numerical results confirmed AFDM’s superiority in reducing pilot overhead

while maintaining estimation accuracy, making it a promising approach for DS-LTV

channel estimation in next-generation wireless systems.
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Chapter 3

Estimation and Extrapolation of

Doubly Sparse Linear Time-Varying

Channels with Off-grid Doppler Shifts

While the on-grid approximation of Definition 2.1.1 is useful for the conception of LTV

channel estimation and sensing schemes and for the analysis of their performance as we

argued in Chapter 2, it lacks support for the finer Doppler resolution needed for channel

prediction or mitigation of channel aging. Indeed, most channel prediction paradigms

[40, 41, 42, 43] involve, explicitly of implicitly, the estimation of Doppler frequency shifts

to within an error margin smaller than the frequency resolution characteristic of the

duration of the channel observation interval. For that sake, we now present a second

approximation for LTV channels that allows, in contrast to the first approximation in

Definition 2.1.1, for fractional-valued Doppler frequency shifts.
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3.1 Off-grid doubly sparse linear time-varying channels

To make the sparse channel model closer to the original model in (1.2), we allow for

fractional-valued Doppler frequency shifts. In this case, only ιp is zero, while κp may take

non-zero values with κp sampled from a uniform distribution i.e., κp ∼ U([−1
2 ,

1
2 ]). Define

ND,l,q as the number of (sub-)paths with the same delays and Doppler shifts integer part

and which only differ in their Doppler shifts fractional part defined as:

ND,l,q ≜ |{p|lp = l, qp = q}|, p = 1 . . . Np (3.1)

In this configuration, the (random) number of paths Np in (1.2) is expressed as follows:

Np =
L−1∑

l=0

Q∑

q=−Q

ND,l,qIl,q (total # paths in the off-grid model) (3.2)

Depending on the scenario, it is in principle possible to model ND,l,q either as a fixed

value or as a random variable, for example, a uniform random variable drawn over the

range J1..NDK. For simplicity, we opt for the first option, that is, ND,l,q = ND,∀l, q for

some value ND and we impose that the following channel power normalization should be

satisfied.
L−1∑

l=0

Q∑

q=−Q

ND∑

i=1

E
[
|αl,q,i|2 Il,q

]
= 1 . (3.3)

Definition 3.1.1 (off-grid Delay-Doppler double sparsity). The complex gain hl,n of the

l-th path of the LTV channel varies with time as

hl,n =

Q∑

q=−Q

Il,q

ND∑

i=1

αl,q,ie
ı2π

n(q+κi)

N , l = 0 · · ·L− 1 (3.4)

for some value ND and where Il,q retains the same description provided in Definition

2.1.1 and Il,q, {αl,q,i, κi}i=1···ND
are statistically mutually independent. The complex gain
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Figure 3.1: An instance of the Delay-Doppler domain response of a doubly sparse time-
varying channel satisfying Definition 3.1.1

is assumed to satisfy αl,q,i ∼ CN
(
0, σ2

α

)
with σ2

α chosen so that (3.3) is respected.

Figure 3.1 illustrates the delay-Doppler sparsity structure under the Type-2 model

in an off-grid scenario, where active components deviate from a predefined grid. This

figure effectively demonstrates the irregular yet structured sparsity inherent to the Type-2

model as defined in Definition 2. Note that the above model is an off-grid approximation

of a time-varying channel.

Remark 3. Maintaining the delay taps as integer values is not to the detriment of the core

message of this work since the same approach we develop to deal with off-grid Doppler

shifts can be extended to off-grid delays. Moreover, the effect of fractional delay values can

still be made to fall under the current model by increasing the value of the delay domain

sparsity parameter pd of the model sufficiently to account for leakage due to off-grid delay

shifts.

Estimating the unknown parameters of the off-grid channel model in (3.4) remains a

challenging task. Indeed, the ND Doppler frequency shifts {q+κi}i=1···ND
associated with

a grid point (l, q) are only different by their fractional part and hence render the prob-

lem of estimating the corresponding complex coefficients {αl,q,i}i=1···ND
ill-conditioned.

Moreover, the number of unknowns in the model i.e., Np, could be prohibitively large.

For both these reasons, we propose a new model based on multiple “elementary” basis
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expansion models (BEM), each set with a bandwidth equal to the frequency resolution

and shifted in frequency to be centered at one of the active grid points. Thanks to its

optimality in terms of time-frequency localization [44], we opt for BEM based on discrete

prolate spheroidal sequences (DPSS).

3.2 Background: DPSS basis expansion model

We begin with an overview of DPSS BEM modeling of a baseband signal hn that occupies

a bandwidth (−W,W ) in digital frequencies with W ∈
(
0, 12
)
. DPSS basis vectors u

(N,W )
b,n

(b = 1, . . . , N) are the eigenvectors of the prolate matrix [30]:

N−1∑

k=0

C
(N,W )
k,n u

(N,W )
b,k = λ

(N,W )
b u

(N,W )
b,n , b = 1 · · ·N,n = 0 · · ·N − 1 (3.5)

where C
(N,W )
k,n is the (k − n)-th entry of the prolate matrix:

C
(N,W )
k,n =

sin (2πW (k − n))

π(k − n)
. (3.6)

The eigenvectors are normalized so that
∑N

n=1

(
u
(N,W )
b,n

)2
= 1. The eigenvalues are ordered

according to their values starting with the largest one: 1 ≥ λ
(N,W )
0 ≥ . . . ≥ λ

(N,W )
N−1 ≥ 0.

The eigenvalues λ
(N,W )
b (representing energy concentration) are clustered near 1 for

b ≤ 2WN , and rapidly drop to zero for b > 2WN [45].

In this study we employ multiple DPSS BEMs, each of which is used to represent the

channel signal component related to the fractional part of the ND Doppler shifts around

one of the grid points (l, q) i.e.,
∑ND

i=1 αl,q,ie
ı2π

nκi
N , and not the channel signal associated

with the whole Doppler spread i.e., hl,n. Each of these BEMs is defined using (3.5) and

(3.6) with W = 1
2N .

In the interest of simplicity, all parameters with the superscript (N,W ) in their

notation, such as u
(N,W )
b,n , will be replaced by their simplified forms e.g., ub,n.
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q
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qsD
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| | | | | |
−Q Q

∑QBEM

b=1 βl,q,bũb,(q−qs)

Figure 3.2: An illustration of how the leakage due to SD clusters of off-grid Doppler
shifts {qs + κi}s=1···SD,

i=1···ND

can be captured by SD frequency shifted copies of a DPSS BEM

{ub,n}b=1···QBEM
(ũb,k in the figure being the DFT of ub,n)

3.3 Off-grid approximation using multiple shifted elementary BEMs

The following term in (3.4) represents a signal occupying a frequency band centered at

digital frequency q
N and of a bandwidth equal to 1

N

hl,q,n ≜
ND∑

i=1

αl,q,ie
ı2π

n(q+κi)

N (3.7)

Its baseband version defined as e−ı2π nq
N hl,q,n can thus be modeled (see Figure 3.2) using a

DPSS BEM of an order equal to QBEM (chosen large enough depending on the required

modeling precision) and a bandwidth (−W,W ) with W = 1
2N by defining

hBEM
l,q,n ≜ eı2π

nq
N

QBEM∑

b=1

βl,q,bub,n . (3.8)

In vector form

βl,q = UH
QBEM

EH
q
N
hl,q (3.9)

hBEM
l,q = E q

N
PBEMEH

q
N
hl,q (3.10)
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withUQBEM
≜ [u1 . . .uQBEM

] andPBEM = UQBEM
UH

QBEM
being the orthogonal projection

matrix associated with the DPSS BEM representation andEf ≜ diag
(
eı2πf0 . . . eı2πf(N−1)

)
.

Inserting the elementary BEMs defined in (3.8) for each Doppler grid point into (3.4)

gives

hBEM
l,n =

Q∑

q=−Q

Il,qe
ı2π nq

N

QBEM∑

b=1

βl,q,bub,n,

=

Q∑

q=−Q

Il,qh
BEM
l,q,n , l = 0 · · ·L− 1 (“multiple shifted elementary BEMs” model)

(3.11)

The precision of the above representation in relation to the order of the elementary BEMs

in the model (3.11) is provided by the following theorem.

Theorem 3.3.1. For any ϵ > 0, if we set QBEM ≥ C log 1
ϵ for some constant C then the

representation error of the model in (3.11) satisfies
∑L−1

l=0 E
[∣∣∣hl,n − hBEM

l,n

∣∣∣
2
]
< ϵ for a

sufficiently large N .

Proof. The proof of Theorem 3.3.1 is given in Appendix B.1.

Theorem 3.3.1 states that the number of DPSS basis functions needed to represent

the channel component associated with a single delay-Doppler grid point grows only

logarithmically with the inverse of the target precision. The following figure (as well

as the numerical results of Section 3.6) shows that as few as 4 DPSS basis functions

(QBEM = 4) are sufficient to get good enough precision. Note that this value is unrelated

to the Doppler spread value i.e., 2Q+1: a larger Doppler spread does not imply the need

for a larger value of QBEM.
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3.4 DS-LTV off-grid channel estimation

Let β be the vectorized form of the BEM coefficients {βl,q,b}b=1···QBEM
l,q,Il,q ̸=0

associated with

the active delay-Doppler grid points. Define B as the following block-diagonal matrix

B = blkdiag
(
B̃, . . . , B̃

)
(3.12)

with B̃ ≜
[
B̃−Q . . . B̃Q

]
being a N × (2Q + 1)QBEM matrix satisfying

[
B̃q

]
n,b

=

1√
N
Ũb,(n−q) and Ũb,n = 1√

N

∑N−1
k=0 ub,ke

−ı2π nk
N being the DFT of the DPSS basis vec-

tor ub,n. Let Aβ be the matrix that places the blocks of β, each of size QBEM, within the

positions corresponding to Il,q ̸= 0 in a larger vector of length LQBEM(2Q+ 1) resulting

in a LQBEM(2Q+ 1)-long vector Aββ that is block sparse.Now, define

α ≜ BAββ . (3.13)

Inserting (3.13) into (2.22), we can write the received pilot samples vector yp as

yp = APMBAβ︸ ︷︷ ︸
≜Mp

β +wp . (3.14)

where M and AP are defined in (2.14). The minimum mean squared error (MMSE)

estimate, β̂, of β based on yp is given by [36].

β̂ = B
(
σ2
αM

H
p Mp + σ2

wI
)−1

MH
p yp . (3.15)

Note that the knowledge of the DDP at the receiver side is here assumed. Finally, define

ĥBEM
l,n =

Q∑

q=−Q

Il,qe
ı2π nq

N

QBEM∑

b=1

β̂l,q,bub,n, n = 0, . . . , N − 1 . (3.16)
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as the resulting MMSE estimate of hBEM
l,n . In vector form

ĥBEM
l =

Q∑

q=−Q

Il,q E q
N
UQBEM

β̂
︸ ︷︷ ︸

≜ĥBEM
l,q

. (3.17)

The mean squared error (MSE) conditioned on a given Il,q realization is then written as

L−1∑

l=0

1

N
E
[∥∥∥hBEM

l − ĥBEM
l

∥∥∥
2
]
≤ 1

N

L−1∑

l=0

Q∑

q=−Q

Il,qE
[∥∥∥hBEM

l.q − ĥBEM
l,q

∥∥∥
2
]

=
1

NNDσ2
α

E
[∥∥∥β − β̂

∥∥∥
2
]

(3.18)

where the inequality is due to the triangle inequality and where the equality is due to the

definition of ĥBEM
l,q in (3.17), to the fact that

∑L−1
l=0

∑Q
q=−Q Il,q =

1
NDσ2

α
per (3.3) and to

the fact that EH
q
N
E q

N
= IN and UH

QBEM
UQBEM

= IQBEM
.

Assumption 3.4.1. The number Np of pilots is sufficiently large for the MSE associated

with estimating β (and hence hBEM
l per (3.18)) to converge to zero as σ2

w → 0.

Remark 4 (Impact of the sensing waveform). The value of Np needed for Assumption

3.4.1 to hold and its associated pilot overhead both depend on the particular waveform

in use. The numerical results given in Section 3.6 show that the relative advantage of

AFDM over OFDM and SCM, which has been analytically established by Theorems 2.4.1

and 2.4.2 under the on-grid channel model, is still valid in the off-grid Doppler shifts

case.

Assumption 3.4.1 is about the MSE of estimating the BEM representation of the

channel. The following corollary to Theorem 3.3.1 provides an analysis of the estimation

MSE when computed with respect to the actual channel defined by (3.1.1) instead of its

BEM representation.

Corollary 3.4.1. Under Assumption 3.4.1 and Definition 3.1.1, provided that N is large
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enough and QBEM ≥ C log 1
ϵ for any ϵ > 0 and some constant C, then

lim
σ2
w→0

E

[
L−1∑

l=0

1

N

∥∥∥hl − ĥBEM
l

∥∥∥
2
]
≤ ϵ (3.19)

Proof. Apply the triangle inequality to hl − ĥBEM
l =

(
hl − hBEM

l

)
+
(
hBEM
l − ĥBEM

l

)

followed by applying Assumption 3.4.1 to the first term and Theorem 3.3.1 to the

second.

3.5 Application to channel extrapolation and prediction

We know from the literature on the Slepian basis [43] that there is a “natural” way to

extend the finite sequences ub,n from the smaller interval J0..N − 1K to the larger one

J−Next ..N+NextK, where Next denotes the additional channel samples to be extrapolated.

This is achieved by letting the index n in (3.5) be defined over Z instead of being confined

to J0..N − 1K leading to the following infinite discrete-time signal

uextb,n ≜
1

λ
(N,W )
b

N−1∑

k=0

C
(N,W )
k,n ub,k, n ∈ Z . (3.20)

Signal (uextb,n)n∈Z (“ext” stands for “extrapolation”) has a discrete-time Fourier transform

(DTFT) that is zero outside (−W,W ) and is the signal that has the least energy outside

the time interval J0..N − 1K from among all the discrete-time signals band-limited to

(−W,W ) [43]. Once we have estimated the multiple-BEM representation of the off-grid

DS-LTV channel on the interval J0 ..N − 1K as in (3.16) and once we have calculated the

infinite-time version of the DPSS basis function as in (3.20), the channel can thus be

extrapolated as follows

hextl,n ≜
Q∑

q=−Q

Il,q e
ı2π nq

N

QBEM∑

b=1

β̂l,q,bu
ext
b,n

︸ ︷︷ ︸
≜hext

l,q,n

, l = 0 · · ·L− 1 , n ∈ Z . (3.21)
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Here, we defined

hextl,q,n ≜ eı2π
nq
N

QBEM∑

b=1

β̂l,q,bu
ext
b,n . (3.22)

Defining uext
n ≜

[
uext1,n · · · uextQBEM,n

]T
and referring to (3.17) gives

hextl,q,n = eı2π
nq
N
(
uext
n

)T
UH

QBEM
EH

q
N
ĥBEM
l,q (3.23)

Theorem 3.5.1. The predictor hextl,n defined by (3.21) for any n > N − 1 based on extrapo-

lating multiple estimated BEMs of order QBEM converges in the squared-mean sense in

the limit of a vanishing noise variance to a reduced-rank (with a reduced rank equal to

QBEM) MMSE estimator of sample hl,n under the assumptions of Definition 3.1.1 and

Assumption 3.4.1.

Proof. The proof of Theorem 3.5.1 is given in Appendix B.2.

Remark 5 (Setting the value of QBEM for prediction purposes). While Theorem 3.5.1

establishes the optimality in a certain sense of the predictor hext
l,n by relating it to a

reduced-rank MMSE estimator, the theorem tells nothing about the optimal value of the

BEM order QBEM to be used while deriving hextl,n (or equivalently about the optimal rank

of the related reduced-rank estimator). The properties of the DPSS basis can give us

some insight. Indeed, it is known [44] that the b-th infinite-length DPSS has 1− λ
(N,W )
b

(respectively λ
(N,W )
b ) of its energy outside (respectively inside) the interval J0 ..N − 1K as

illustrated in Figure 3.3.

To get a non-vanishing value hext
l,q,n = eı2π

nq
N
∑QBEM

b=1 βl,q,bu
ext
b,n for n > N − 1, the

sum should include terms with large-enough samples uextb,n i.e., with small-enough λ
(N,W )
b .

While this constrains QBEM to be sufficiently large, it simultaneously constrains the

estimation SNR to be high enough to guarantee a precise estimation of coefficients βl,q,b

associated with basis functions that have little contribution to the signal received inside

the observation interval J0 ..N − 1K.
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Figure 3.3: Extrapolated versions of the first four DPSS (N = 2048,W = 1
2N )

Remark 6 (Relation to other DPSS extrapolation prediction methods). Our approach

applies multiple elementary DPSS-based BEMs each modeling the narrow-band channel

component e−ı2π nq
N hl,q,n associated with one of the delay-Doppler grid points. The DPSS-

based BEM modeling in [43], on the other hand, uses a single BEM to represent the

multi-band signal hl,n =
∑Q

q=−Q Il,q
∑ND

i=1 αl,q,ie
ı2π

n(q+κi)

N of each channel delay tap to give

ȟBEM
l,n =

Q̌BEM∑

b=1

β̌l,q,bǔb,n, n = 0, . . . , N − 1 . (3.24)

where ǔ
(N,W )
b,k (b = 1, . . . , Q̌BEM) are the basis vectors of the single multi-band BEM

defined as
N−1∑

k=0

Č
(N,W )
k,n ǔb,k = λ̌

(N,W )
b ǔb,n, b = 1 · · ·N,n = 0 · · ·N − 1 (3.25)

where Č
(N,W )
k,n is the (k − n)-th entry of the multi-band prolate matrix:

Č
(N,W )
k,n ≜

Q∑

q=−Q
Il,q=1

eı2π
q(k−n)

N
sin (2πW (k − n))

π(k − n)
. (3.26)
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The associated channel predictor is

ȟextl,n ≜
Q̌BEM∑

b=1

β̌l,q,bǔ
ext
b,n , l = 0 · · ·L− 1 , n ∈ Z , (3.27)

where the associated extrapolated basis vector is given by

ǔextb,n ≜
1

λ̌b
(N,W )

N−1∑

k=0

Č
(N,W )
k,n ǔb,k, n ∈ Z . (3.28)

The main issue with the multi-band DPSS approach is the size of the codebook that needs

to be computed or stored at the network device performing the channel estimation. As

can be seen from (3.14), the codebook size in our approach is the number of columns

of the matrix MB which equals QBEML(2Q + 1). In the case of the multi-band BEM

approach, the codebook size would be L
∑2Q+1

k=1

(
2Q+1

k

)
Q̌BEM(k) ≫ QBEML(2Q + 1) as

every different combination of k active Doppler grid points (k ∈ J1 ..2Q+ 1K) would result

in a different multi-band prolate matrix Č
(N,W )
k,n (3.26) and thus in a different DPSS basis

(3.25). Note that, for the same reason, the multi-band DPSS BEM approach is not suited

for compressed sensing applications with Doppler domain sparsity. Another advantage

of the multiple shifted BEMs scheme is the fact that we can analytically quantify its

precision, as we did in Theorem 3.3.1 and Corollary 3.4.1.

3.6 Numerical results

Since it has been theoretically proven that OFDM has a smaller overhead than SCM,

the numerical results will focus on comparing AFDM sparse recovery performance to

that of OFDM. We used 100 realizations of channels having a Type-1 delay-Doppler

sparsity with pd = 0.2, pD = 0.2 and N = 2048, L = 20, Q = 7 (corresponding to a 15

MHz transmission at a 70 GHz carrier frequency, a maximum target moving speed of 396

km/h and a maximum target range of 400 meters).
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Figure 3.4: Channel estimation MSE for N = 2048, L = 20, Q = 7, pd = 0.2, pD =
0.2, Ns = 32, Nfft = 64

OFDM transmission is organized in N -long frames, each constructed from Ns OFDM

symbols each of which costing L− 1 in CP overhead. Within each frame, Np,f subcarriers

within Np,t OFDM symbols are set as pilots as it is shown by Figure 2.3. As highlighted

previously in remark 4, Figure 3.4 illustrates that AFDM waveform maintains its su-

periority particularly in handling off-grid Doppler shifts. This is particularly evident

when comparing AFDM and OFDM, both of which have nearly identical overheads,

with overheadAFDM = 767 and overheadOFDM = 769. Despite the minimal difference in

overhead, AFDM shows superior performance in channel estimation. Similarly, Figure

3.5 shows in the case of additional channel samples to be extrapolated Next = 500 that

AFDM has a superior performance in therms of channel prediction compared to OFDM .

Figure 3.6 compares the MSE performance of AFDM using different approaches,

including our proposed method, a single BEM approach, and grid refinement with a

refinement factor of O = 4 [46], for channel estimation and Figure 3.7 for channel

prediction with Next = 500 (represented by the blue lines) and Next = 1000 (represented

by the yellow lines). All methods are evaluated under the same overhead. For channel

estimation, the multiple shifted BEMs approach and the single BEM method achieve

similar performance, both outperforming the grid refinement technique. However, for
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Figure 3.5: Channel prediction MSE for N = 2048, L = 20, Q = 7, pd = 0.2, pD =
0.2, Ns = 32, Nfft = 64, Next = 500

Table 3.1: Size of the codebook for each method

Method Codebook Size

One BEM 2,621,360
Multiple BEMs 1,200

channel prediction, our approach exhibits a slight performance degradation compared to

the single BEM method. Nevertheless, as highlighted in Remark 6, our method requires a

significantly smaller codebook size than the single BEM approach shown by the Table 3.1

(for the same settings as the previous simulations), making our approach more efficient

in practical implementations.

3.7 Conclusion

In this chapter, we introduced our approach for estimating and extrapolating doubly sparse

linear time-varying (DS-LTV) channels with off-grid Doppler shifts. We demonstrated

the limitations of traditional on-grid approximations and proposed an off-grid model that

accounts for fractional Doppler shifts. To address the challenges of estimating off-grid

DS-LTV channels, we leveraged multiple shifted elementary BEMs based on DPSS. This

approach allowed us to efficiently capture the sparse and structured nature of delay-
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Figure 3.6: Channel estimation MSE performance of AFDM with different approaches,
all using the same overhead for N = 2048, L = 20, Q = 7, pd = 0.2, pD = 0.2
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Figure 3.7: channel prediction MSE performance of AFDM with different approaches,
all using the same overhead, for N = 2048, L = 20, Q = 7, pd = 0.2, pD = 0.2, Next ∈
{500, 1000}
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Doppler domain responses while ensuring minimal codebook size compared to the single

BEM approach. Theoretical analysis established the accuracy of our proposed model,

showing that the estimation error diminishes as the number of DPSS basis functions

increases logarithmically. We also extended the proposed model to channel extrapolation

and prediction, utilizing DPSS properties to extend the estimated BEM coefficients

beyond the observation interval. Theoretical proofs confirmed that our method achieves

a reduced-rank MMSE estimator in the low-noise regime. Through numerical simulations,

we validated the effectiveness of our approach, demonstrating superior channel estimation

and prediction performance compared to conventional OFDM. Our multiple shifted

BEMs approach has been compared to the single BEM method and grid-refinement

technique. Our method outperforms grid refinement for channel estimation but shows

a slight performance degradation in channel prediction compared to the single BEM

approach. However, it remains more efficient in practical implementations due to its

significantly smaller codebook size. Overall, the proposed framework offers a robust

and computationally efficient solution for DS-LTV channel estimation and extrapolation,

making it highly suitable for next-generation wireless communication systems, particularly

in high-mobility environments where precise Doppler estimation is crucial.
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Further Applications

In this chapter, further applications of delay-Doppler sparsity are discussed. More pre-

cisely, we first point to the close relation between Integrated Sensing and Communication

(ISAC) and the problem of DS-LTV channel estimation and how the results we obtained

pertaining to the latter paradigm hence extend to the former. Focusing on the application

of Affine Frequency Division Multiplexing (AFDM) in ISAC, we further demonstrate its

potential for efficient delay-Doppler estimation in sub-Nyquist settings.

4.1 Integrated sensing and communications

The results obtained in the thesis pertaining to DS-LTV channel estimation extend to

target detection and target parameter estimation in ISAC applications. Indeed, the LTV

channel model originally given in (1.2) and reproduced below can be seen as the echo

signal from Np point targets

h(t, τ) =

Np∑

p=1

gpe
ı2πνpt∆fδ(τ − τp) . (4.1)

In such a case, the delays and the Doppler frequency shifts are related to the target

parameters as follows. Let c, fc, vp, rp denote the speed of light (m/s), carrier frequency
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(Hz), relative velocity (m/s) and range (m) associated with the p-th point target, respec-

tively. In a mono-static setting (in which the ISAC signal transmitter and receiver are

co-located), the range and relative velocity of the p-th target are respectively

rp = c · τp
2

, vp = c · νp∆f

2fc
. (4.2)

4.1.1 Application of the DS-LTV model to ISAC

When the number Np of point targets is relatively small, it is thus clear from (4.1)

and (4.2) that the problem of target detection and target range and relative velocity

estimation is closely related to the problem of estimation of doubly sparse LTV channels.

Indeed, under the on-grid approximation, estimating the delay-Doppler sparsity support

of the DS-LTV channel (see Definition 2.1.1) associated with the echo signal, that is the

set {(l, q), Il,q ̸= 0}, gives an estimate of the targets’ range and relative velocity.

The results given in Chapters 2 and 3 pertaining to the pilot overhead needed when

using different waveforms to estimate the DS-LTV channel with an unknown delay-

Doppler profile are also relevant for comparing the pilot overhead needed by different

waveforms when these waveforms are used for sensing purposes. All that is needed is to

set the sparsity parameters of the DS-LTV model, namely pd and pD, in accordance with

the characteristics of the wireless propagation environment related to the targets to be

detected.

4.2 Sub-Nyquist radar

Traditional sub-Nyquist radar techniques exploit channel sparsity to reduce sampling

rates, but many existing methods rely on impractical random sampling strategies or

complex analog-domain processing, which introduce hardware challenges and noise

susceptibility [47, 48, 49]. These limitations hinder their applicability in real-world

scenarios, necessitating more efficient solutions. As an alternative, we show in this section
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that the optimality of AFDM in terms of pilot overhead under delay-Doppler sparsity

along with the chirp nature of its waveform make it relevant for sub-Nyquist radar

applications.

Indeed, in sensing and radar applications, the sub-Nyquist radar paradigm [47]

leverages wireless channel sparsity to allow for sub-Nyquist receivers. For example, some

of the solutions presented in [47] consider the use of random sub-Nyquist sampling to

achieve a low coherence for the sensing matrix, a property that translates into good

compressed sensing performance. However, random sub-Nyquist sampling is technically

impossible in many applications [48]. Other solutions in [47] don’t rely on random

sampling but require dedicated analog-domain processing, more precisely multi-channel

processing with multiple mixers and integrators for direct Fourier coefficient extraction.

Similarly, the sub-Nyquist sampling method in [49] relies on dedicated analog-domain

components needed to perform continuous-time signal differentiation. This requirement

complicates hardware design and introduces noise susceptibility, making the approach less

robust. Also, the approach in [48] relies on specialized hardware components, including

radio frequency (RF) signal splitters and multiple analog delay modules, which not only

increase the complexity of implementation but also reduces signal-to-noise ratio due to

analog domain splitting.

4.2.1 AFDM-based sub-Nyquist radar

We now consider the case where the AFDM signal is destined for a sensing receiver

either co-located with the transmitter (the mono-static setting) or in a remote device

(the bi-static setting). In any of these settings, the non-zero complex gains αl,q in (2.7)

will represent a point target with a delay l (related to the to-be-estimated range) and a

Doppler frequency shift q (related to the to-be-estimated velocity).

Instead of applying DAFT to the received AFDM signal after sampling as in basic

AFDM operation [10] (which would require a sampling rate at least equal to the signal
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Figure 4.1: Time-frequency content of one AFDM pilot and its echoes, before and after
analog de-chirping and sampling

bandwidth), an alternative consists in first de-chirping the received signal in the analog

domain with a continuous-time version [50] of a DAFT chirp carrier e.g., of the 0-th chirp
(
eı2π(c20

2+ 1
N
0n+c1n2)

)
n
. The result is a multi-tone signal (as shown in Fig. 4.1 in the case

of Np = 1 and P = 2) with discontinuities due to the frequency wrapping characterizing

AFDM chirp carriers. In this figure, the de-chirped signal occupies two disjoint frequency

bands that get merged into one (without discontinuities) thanks to spectrum folding after

sampling at rate fs =
(L−1)P+1

T . In the general case of Np ≥ 1 pilots, if we restrict the

total subset P of pilot guard indexes to be an interval, then sampling after de-chirping

can be done at rate fs =
Np((L−1)P+1)

T to yield the vector yp used for target estimation.

In most practical configurations
Np((L−1)P+1)

T ≪ N
T = 1

∆t , and hence the sampling rate

needed for AFDM sensing is significantly smaller than what is needed in sensing based

on OFDM or OTFS waveforms.

The gain that can be achieved in terms of sampling rate reduction when AFDM is
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employed for sub-Nyquist sensing. This gain is illustrated (for the same setting as Fig.

2.7b) by Table 4.1.

Table 4.1: Minimal sampling rate at sensing receiver

Waveform OFDM OTFS AFDM

Sampling rate
fs (MHz)

30 = BW 30 = BW 3.45 =
Np((L−1)P+1)

T

4.3 Conclusion

In this chapter, we proposed a sensing solution with simplified analog-domain processing,

specifically chirp carrier mixing, for the case where the ISAC signal was generated using

AFDM waveform. AFDM, based on the Discrete Affine Fourier Transform (DAFT),

had been shown to achieve full diversity over doubly dispersive channels, making it a

strong candidate for efficient sensing applications. To further reduce the sampling rate

requirements, we described a sensing receiver architecture that took advantage of both

the multi-chirp nature of AFDM and the optimization of the DAFT chirp rate c1 (through

parameter P ) to minimize the number of required pilots. This approach enabled accurate

delay-Doppler estimation while significantly lowering hardware complexity. The proposed

framework applied to both mono-static and bi-static sensing scenarios, where the receiver

could be co-located with the AFDM transmitter or positioned remotely, such as in a base

station-to-terminal configuration. By integrating AFDM’s unique waveform properties

with optimized sensing strategies, our method provided a practical and efficient solution

for next-generation radar and wireless sensing applications.
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Conclusion

In this thesis, we have investigated the problem of waveform design for sparse delay-

Doppler channel estimation in high-mobility wireless communication systems. Our study

focused on developing and analyzing efficient estimation techniques for DS-LTV channels,

leveraging both on-grid and off-grid approximations. The goal was to enhance channel

estimation accuracy while minimizing pilot overhead, crucial for next-generation wireless

technologies. In the first part, we explored DS-LTV channel estimation under an on-

grid assumption, where Doppler shifts align with a predefined grid. We introduced

three different sparsity models and analyzed their impact on estimation performance.

By leveraging proposed framework, we demonstrated that AFDM provides superior

performance compared to conventional waveforms such as OFDM and OTFS. The key

conclusions from this part are:

• When the delay-Doppler sparsity support is known at the receiver side, the asymp-

totic analysis of the MSE associated with sparse channel estimation can be leveraged

to compare the minimal pilot overhead requirement of different wireless waveforms.

Using this approach, we demonstrated that waveforms differ in their capacity to

exploit delay-Doppler sparsity, with AFDM offering an advantage over OTFS,

OFDM and SCM.
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• When the delay-Doppler sparsity support is not known at the receiver side, the DS-

LTV channel estimation problem can be effectively transformed into a structured

compressed sensing problem, enabling significant pilot overhead reduction. In this

context, pilot overhead comparison of the different waveforms can be analyzed

through its effect on performance criteria relevant to compressed sensing problems.

Again, it turns out that the AFDM-based approach exploits delay-Doppler sparsity

more efficiently than traditional waveforms, leading to improved estimation accuracy.

In the second part, we extended our study to off-grid DS-LTV channel estimation,

addressing the challenge of mismatches between actual Doppler shifts and predefined

grid points. We proposed novel off-grid approximation techniques using multiple shifted

elementary DPSS BEMs, leading to enhanced estimation robustness. Additionally, we

investigated the application of AFDM for sparse channel extrapolation and prediction.

The key conclusions from this part include:

• Off-grid channel estimation significantly improves accuracy in practical scenarios

where Doppler shifts do not perfectly align with predefined grid points. moreover,

the particular off-grid paradigm we propose has the advantage, thanks to its reliance

on an elementary DPSS basis, of offering channel representation precision guarantees

with a dependence on the basis size that can be analytically established.

• Thanks to the inherent extrapolation capability of the DPSS basis, the proposed

extrapolation techniques enable efficient channel prediction, crucial for adaptive

transmission in high-mobility networks.

• AFDM continues to outperform existing methods in handling off-grid Doppler shifts,

confirming its suitability for next-generation communication systems.

Beyond channel estimation, we explored further applications of our findings in radar and

sensing systems. By leveraging delay-Doppler sparsity, we demonstrated the feasibility of

AFDM based sub-Nyquist radar techniques that reduce sampling rates while preserving
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detection accuracy. This highlights the broader impact of our research beyond traditional

communication scenarios.

In summary, this thesis provides a comprehensive framework for efficient DS-LTV

channel estimation, contributing to the development of robust, low-overhead communica-

tion techniques for high-mobility environments. Our findings pave the way for future

advancements in adaptive waveform design, sparse channel estimation, and integrated

communication-sensing applications.
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Appendix A

Chapter 2 Appendices

A.1 Proof of Lemma 2.3.1

We only consider P = 1. The proof for P > 1 follows the same arguments. For any

k ∈ J−Q..L− 1 +QK, define

Qk ≜ {l ∈ J0 ..L− 1Ks.t.∃q ∈ J−Q..QK, q + l = k}

= Jk −Q..k +QK ∩ J0 ..L− 1K ≜ Jlk,max ..lk,minK
(A.1)
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For any Np ∈ J0 ..2Q+ 1K define Lk,Np ≜




Qk

Np


 as the set of all Np-size subsets of Qk.

Then
∣∣Lk,Np

∣∣ =




|Qk|

Np


 and

P[Xk = Np] =

P[
⋃

(l1,...,lNp
)

∈Lk,Np

{
⋂

l∈
{l1,...,lNp}

Il,l−k ∩
⋂

l∈Qk\
{l1,...,lNp}

I l,l−k}]

=
∑

(l1,...,lNp
)

∈Lk,Np

P[
⋂

l∈
{l1,...,lNp}

Il,l−k ∩
⋂

l∈Qk\
{l1,...,lNp}

I l,l−k]

=
∑

(l1,...,lNp
)

∈Lk,Np

∏

l∈
{l1,...,lNp}

P[Il,l−k]
∏

l∈Qk\
{l1,...,lNp}

P[I l,l−k]

(A.2)

where the second equality follows because the terms of the union are all disjoint events and

where the third equality is due to the independence property established by Assumption

2.1.1 (in each term of the sum in the right-hand side of the second equality in (A.2),

each pair of events is either (Il1,q1 , Il2,q2),
(
Il1,q1 , I l2,q2

)
or
(
I l1,q1 , I l2,q2

)
with l1 ̸= l2 and

q1 ̸= q2).

If k ∈ JQ..L − 1 − QK, lk,min = k − Q and lk,max = k + Q i.e., |Qk| = 2Q + 1 and
∣∣Qk \ {l1, . . . , lNp}

∣∣ = 2Q+ 1−Np as shown in Figure A.1a.

Since P[Il,l−k] = pdpD and P[I l,l−k] = 1− pdpD due to Definition 2.1.1, we get

P [Xk = Np] =




2Q+ 1

Np


 (pdpD)

Np (1− pdpD)
2Q+1−Np . (A.3)

Thus, ∀k ∈ JQ..L−QK, Xk ∼ B(2Q+1, pdpD). If F (n, k, p) is the cumulative distribution
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function (CDF) of B(n, p) then

P [Xk > Np] = 1− F (2Q+ 1, Np, pdpD), ∀k ∈ JQ..L−QK . (A.4)

If k ∈ J−Q..Q− 1K ∪ JL−Q..L− 1 +QK then lk,min = k −Q and lk,max = k +Q cannot

be both satisfied and |Qk| < 2Q+ 1 as shown in Figure A.1b. Define ρk ≜ |Qk|. Either

ρk < Np, in which case Lk,Np = ∅ and P [Xk = Np] = 0 or M ≤ ρk < 2Q+ 1, in which

case
∣∣Qk \ {l1, . . . , lNp}

∣∣ = ρk −Np and

P [Xk = Np] =




ρk

Np


 (pdpD)

Np (1− pdpD)
ρk−Np . (A.5)

We thus have Xk ∼ B(ρk, pdpD) leading to

P [Xk > Np] = 1− F (ρk, Np, pdpD)

≤ 1− F (2Q+ 1, Np, pdpD)

∀k ∈ J−Q..Q− 1K ∪ JL−Q..L− 1 +QK .

(A.6)

The inequality in (A.6) follows from the decreasing monotonicity property in n of the CDF

of the binomial distribution B(n, k, p). Combining (A.4) and (A.6) gives us a uniform

upper bound on the CCDF of Xk for any k ∈ J−Q..L− 1 +QK.

A.2 Proof of Theorem 2.3.1

First, write

P [Xk > Np] ≤P [B > Np]

≤
(

pdpD

Np/(2⌈QP ⌉+ 1)

)Np

×
(

1− pdpD

1−Np/(2⌈QP ⌉+ 1)

)2⌈Q
P
⌉+1−Np

(A.7)
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where the first inequality is due to Lemma 2.3.1 and the third is due to the Chernoff’s

bound applied to B
(
2⌈QP ⌉+ 1, pdpD

)
. Inserting Np = O(logK) in (A.7), it can be

shown after some manipulations that the right-hand side of (A.7) is O
(
1
K

)
and hence

P [Xk > Np] = O
(
1
K

)
.

Next, define ∆l,q ≜ |αl,qIl,q − α̂l,qIl,q|, kl,q ≜ q − 2c1Nl and note that the MSE writes

now as
∑L−1

l=0

∑Q
q=−Q E[∆2

l,q] with

E[∆2
l,q] = E[∆2

l,q|Il,q = 0]P[Il,q = 0]+

E[∆2
l,q|Il,q = 1, 0 < Xkl,q ≤ Np]P[Il,q = 1, 0 < Xkl,q ≤ Np]+

E[∆2
l,q|Il,q = 1, Xkl,q > Np]P[Il,q = 1, Xkl,q > Np] . (A.8)

The first term in the right-hand side of (A.8) is straightforwardly zero. As for the second

term, let αkl,q be the Xkl,q -long vector of complex gains αl̃,q̃ satisfying q̃− 2Nc1 l̃ = kl,q of

which αl,q occupies the il,q-th entry. Recalling the pilot pattern definition in (2.13) and

the signal input-output relation in (2.12), the pilot samples related to αl̃,q̃ are received at

DAFT domain positions {(mp + kl,q)N}p=1···Np where mp is the index of the p-th DAFT

domain pilot symbol. Let ykl,q be the Np-long vector formed by these samples. It relates

to αkl,q

ykl,q = M
(i)
kl,q

αkl,q +wkl,q (A.9)

where is the vector composed of the entries associated with the received samples ykl,q of

the noise vector wp from (2.14) and where matrix M
(i)
kl,q

is the Np ×Xkl,q measurement

matrix associated with configuration i and formed by Np rows and Xkl,q columns of the

|P| × L(2Q+ 1) matrix APM (see (2.14)) where, we recall, |P| = Np(2|c1|N(L− 1) +

2Q+ 1) = Np(P (L− 1) + 2Q+ 1). Let α̂kl,q be the MMSE estimate of αkl,q based on

ykl,q . Using the law of total expectation and the expression of the error covariance of the
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MMSE estimator [36, (12.29)] we obtain

E
[∥∥αkl,q − α̂kl,q

∥∥2 |Il,q = 1, 0 < Xkl,q ≤ Np

]

=

CNp∑

i=1

(
1

σ2
w

(
M

(i)
kl,q

)H
M

(i)
kl,q

+
1

σ2
α

I

)−1

p(i)
(A.10)

where CNp ≜
∑Np

Xkl,q
=1



∣∣Qkl,q

∣∣− 1

Xkl,q − 1


 ≤ ∑Np

Xkl,q
=1




2⌈QP ⌉

Xkl,q − 1


 is the number of

possible delay-Doppler configurations leading to 0 < Xkl,q ≤ Np and Il,q = 1 and p(i) is

the probability of the i-th configuration among them so that
∑CNp

i=1 p(i) = O(1). We thus

have

E
[
∆2

l,q|Il,q = 1, 0 < Xkl,q ≤ Np

]

=

CNp∑

i=1

σ2
w

[((
M

(i)
kl,q

)H
M

(i)
kl,q

+
σ2
w

σ2
α

I

)−1
]

(il,q ,il,q)

p(i)
(A.11)

From the definition of matrix M in (2.15), (2.16) and the formula for pilot symbols

amplitude in (2.19), it can be shown that 1√
P (L−1)+2Q+1

M
(i)
kl,q

has full rank in the case

Xkl,q ≤ Np with singular values that are bounded from below by a non-zero constant1

uniformly in (l, q), i and K. This, along with the assumption P = O
(
K(κd+κD−1)+

)

made in the theorem statement, leads to
(
M

(i)
kl,q

)H
M

(i)
kl,q

having eigenvalues that are

O (P (L− 1) + 2Q+ 1) = O(Kκd+κD) ∀i. The asymptotic order of the right-hand side of

(A.11) is thus σ2
ασ

2
w

Kκd+κDσ2
α+σ2

w
. Combining this fact with (2.6) we conclude that there exists

C1,1 such that for K large enough and σ2
w small enough the following holds uniformly in

1Assuming for simplicity that N is an integer multiple of Np and that the pilots indexes are dispersed
uniformly throughout the AFDM symbol with a minimal inter-pilot interval of size N

Np
, it is straightforward

to show that 1√
P (L−1)+2Q+1

M
(i)
kl,q

is, up to a complex scalar multiplication, a sub-matrix of the Np-point

DFT matrix composed of Xkl,q of its columns
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l, q

E
[
∆2

l,q|Il,q = 1, 0 < Xkl,q ≤ Np

]
≤ C1,1σ

2
w

Kκd+κD
(A.12)

Now note that since P
[
Il,q = 1, 0 < Xkl,q ≤ Np

]
≤ P [Il,q = 1] = pdpD then there exists

C1,2 such that for K large enough the following holds ∀(l, q)

P
[
Il,q = 1, 0 < Xkl,q ≤ Np

]
≤ C1,2K

κd+κD−2 . (A.13)

In the third term of the right-hand side of (A.8),

E
[
∆2

l,q|Il,q = 1, Xkl,q > Np

]
= E

[
|αl,qIl,q|2 |Il,q = 1, Xkl,q > Np

]

= E
[
|αl,q|2

]

=
1

pdLpD(2Q+ 1)

≤ C2,1

Kκd+κD
(A.14)

where the first equality holds because whenever the problem of estimating the Xkl,q

unknown complex gains appearing at position kl,q is infeasible (due to a number Np of

pilots smaller than the number of unknowns Xkl,q and hence to rank-deficient A
(i)
kl,q

) we

can set α̂l,q = 0, the second equality holds because αl,q is independent from
{
Il̃,q̃

}
(l̃,q̃) ̸=(l,q)

,

the third equality is due to (2.6) and the inequality on the last line holds for sufficiently

large K uniformly in l, q due to Assumption 2.3.1. Also, there exists C2,2 such that for

K large enough, the following holds uniformly in (l, q)

P
[
Il,q = 1, Xkl,q > Np

]
= P

[
Xkl,q > Np|Il,q = 1

]
P [Il,q = 1]

≤ C2,2
1

K
Kκd+κD−2 =

C2,2K
κd+κD

K3
(A.15)

This is the case because on the one hand and for any l, q, P [Il,q = 1] = pdpD =
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O
(
Kκd+κD−2

)
. On the other hand, P

[
Xkl,q > Np|Il,q = 1

]
= P

[
X̃kl,q > Np − 1

]
where

X̃kl,q is a random variable with a CCDF that is upper-bounded by the CCDF of a

B
(
2⌈QP ⌉, pdpD

)
distribution (instead of B

(
2⌈QP ⌉+ 1, pdpD

)
for Xkl,q), a result that can

be proved using the same steps as the proof of Lemma 2.3.1 while replacing Qk with

Qkl,q \ {l} and Lk with




Qkl,q \ {l}

Np − 1


. It thus holds that P

[
X̃kl,q > Np − 1

]
= O

(
1
K

)
.

Putting all pieces together, we get E
[
∆2

l,q

]
≤ C1

σ2
w

K2 + C2
1
K3 where C1 ≜ C1,1C1,2 and

C2 ≜ C2,1C2,2. Recalling that L,Q = O(K) gives that there exists a constant C such

that for K large enough the following holds ∀σ2
w

L−1∑

l=0

Q∑

q=−Q

E
[
∆2

l,q

]
≤

L−1∑

l=0

Q∑

q=−Q

(
C1σ

2
w

K2
+

C2

K3

)

≤ C

(
σ2
w +

1

K

)
. (A.16)

Letting σ2
w tend to zero, we get

lim
σ2
w→0

lim
K→∞

E

[
L−1∑

l=0

1

N

N−1∑

n=0

∣∣∣hl,n − ĥl,n

∣∣∣
2
]
=

lim
σ2
w→0

lim
K→∞

E



L−1∑

l=0

Q∑

q=−Q

∆2
l,q


 ≤ lim

σ2
w→0

Cσ2
w = 0

(A.17)

This proves that the MSE tends to zero when the number of pilots Npmin = O(logK).

This number of pilots, each costing (L − 1)P + 2Q + 1 samples, results since P =

O(K(κd+κD−1)+) in a total overhead Npmin ((L− 1)P + 2Q+ 1) = O (Kκd+κD logK).

This completes the proof of Theorem 2.3.1.

A.3 Proof of Lemma 2.4.1

Let Sd ≜
∑L−1

l=0 Il be the random variable representing the number of active delay

taps. From Definition 2.1.1 and Assumption 2.1.1, Sd ∼ B (L, pd) since it is the sum of
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independent Bernoulli random variables Il ∼ Bernoulli (pd). Applying Chernoff’s bound

to Sd evaluated at sd = (1 + ϵ)Lpd (with an ϵ > 0 that can be set as small as needed)

gives after some algebraic manipulations

P [Sd > sd] ≤
(
pd
sd
L

)sd
(
1− pd
1− sd

L

)L−sd

= e−Ω(Lpd). (A.18)

As for SD,l, the joint sparsity of {I(l)q }l=0···L−1 follows from writing

P [∃l, Il = 1, SD,l > sD] ≤
L−1∑

l=0

P [Il = 1, SD,l > sD]

=
L−1∑

l=0

P [SD,l > sD|Il = 1]P [Il = 1]

=

L−1∑

l=0

P [SD,l > sD|Il = 1] pd

≤ LpdF̄B(2Q+1,pD) (sD)

≤
(

pD
sD

2Q+1

)sD
(

1− pD
1− sD

2Q+1

)2Q+1−sD

= e−Ω((2Q+1)pD), (A.19)

where the first inequality is due to the union bound, the second inequality is due to the fact

that Assumption 2.1.1 upper-bounds its CCDF by that of a B (2Q+ 1, pD) distribution

and the third inequality and the last equality follow from applying the Chernoff’s bound

to the latter evaluated at sD = (1 + ϵ)(2Q+ 1)pD.

Combining (A.18) and (A.19) completes the proof of the lemma.

A.4 Proof of Theorem 2.4.1

In the case of SCW, defining α̃l,q ≜ αl,qe
ı2π lq

N , rearranging yp in 2.22 into ỹp (composed

of L successive blocks, with the l-th blocks composed of the l-th sample in each of the
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Np pilot intervals) and assuming 2Q+ 1 divides N and that the p-th pilot position (for

any p ∈ J1 ..NpK) satisfies mp = qp
N

2Q+1 for some qp ∈ J0 ..2QK, we can write ỹp = M̃scw
p α̃

where α̃ is the vectorized form of α̃l,q and M̃scw
p ≜ IL ⊗

(
diag

(
p1, . . . ,pNp

)
F2Q+1,Np

)
.

Here, F2Q+1,Np is the partial inverse Fourier measurement matrix formed from Np rows

of the (2Q + 1)-point inverse DFT matrix. The HiRIP of M̃scw
p can thus be derived

and proven to be equal to the value given in the theorem statement by using the known

RIP of partial inverse Fourier measurement matrices followed by applying [37, Theorem

4] pertaining to the HiRIP of hierarchical measurement matrices having the Kronecker

property. This completes the part of the proof related to SCM.

As for OFDM, it can be shown that the estimation problem has a measurement

matrix M̃ofdm
p ≜

(
diag

(
p1, . . . ,pNp,f

)
FL,Np,f

)
⊗ F2Q+1,Np,t where FL,Np,f

is the partial

Fourier measurement matrix formed from Np,f rows of the L-point inverse DFT matrix.

The value of the HiRIP of M̃ofdm
p given in the statement of the theorem follows thus from

the RIP of the partial Fourier measurement matrix and the HiRIP result pertaining to

Kronecker hierarchical measurements.

A.5 Proof of Theorem 2.4.2

First, out of the pilot samples set P , consider the subset Pp associated with the p-th pilot

symbol transmitted at the DAFT index mp (Fig. 2.5). To homogenize the sensing signal

model associated with edge samples and inner samples of Pp, we apply two overlap-add

operations: adding the samples received within the index interval Jmp −Q..mp − 1K to

those received within Jmp + (L− 1)P −Q..mp + (L− 1)P − 1K and the samples received

within Jmp+(L−1)P +1 ..mp+(L−1)P +QK to those received within Jmp+1 ..mp+QK.

Now, define

Dl ≜
{
(l̃, q)s.t.(q + P l̃)(L−1)P+1 = l

}
(A.20)
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as the set of delay-Doppler grid points that potentially contribute to the pilot sample

received at DAFT domain index l ∈ Jmp ..mp + (L − 1)P K (Fig. A.2) after the two

overlap-add operations described above. Note that Dl does not depend on the pilot

symbol index p and that it has a cardinality that does not change with l and which satisfies

|Dl| ≤ 2⌈QP ⌉+1. Next, define αDl
≜ [αl,q](l,q)∈Dl

and α̃ ≜
[
αT

D0
· · · αT

D(L−1)P

]T
. The

entries of α̃ are just a permutation of the entries of α and estimating one of these vectors

directly gives an estimate of the other. Now, it can be shown that when we set P as in

the theorem and ϵ > 0 as small as needed, then α̃ is (s̃d, s̃D)-hierarchically sparse with

high probability.

s̃d = (L− 1)P + 1, s̃D = (1 + ϵ) log(LP ) . (A.21)

Indeed, the first level (of size (L − 1)P + 1) of α̃ is sensed without compression with

a number of measurements equal to (L− 1)P + 1 while s̃D can be determined thanks

to Definition 2.1.1 and Assumption 2.1.1. Indeed, the latter assumption implies that

random variables {I(l1)q }q=−Q···Q are independent from {I(l2)q }q=−Q···Q for any l1 ̸= l2 and

hence that S̃D,l ≜
∑

(l̃,q)∈Dl
Il̃,q has a binomial distribution since it is the sum of mutually

independent Bernoulli random variables. The same approach as in the proof of Lemma

2.4.1 can thus be applied to S̃D,l. Now, we can write the signal model of sensing α̃ as

ỹp = M̃pα̃+ w̃p, (A.22)

where ỹp = [ỹT
p,0 · · · ỹT

p,(L−1)P ]
T. For each l, ỹp,l is a Np × 1 vector composed of the

pilot samples received at DAFT domain positions {mp + l}p=1···Np
. Note that by this

definition ỹp is obtained by permuting yp in (2.22) in accordance with the permutation

that gives α̃ from α. Next, by setting for each p ∈ J1..NpK mp = qp
N

2⌈Q
P
⌉+1

for some
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integer qp it follows from (2.12) and (A.20) that M̃p has the following Kronecker structure

M̃p = I(L−1)P+1 ⊗ M̃D, (A.23)

with M̃D = diag(p1 · · ·pNp)F2⌈Q
P
⌉+1,Np

Ψ, F
2⌈Q

P
⌉+1,Np

is a
(
2⌈QP ⌉+ 1

)
× Np partial

Fourier measurement matrix and Ψ is a diagonal matrix with unit-modulus entries. We

can thus use [51, Theorem 4.5] pertaining to sub-sampled Fourier matrices to get that

for sufficiently large L, Q, sufficiently small δ, and

Np > O

(
1

δ2
log2

1

δ
log

log(LP )

δ
log(LP ) log

Q

P

)
(A.24)

the RIP constant δs̃D of M̃D satisfies δs̃D ≤ δ with probability 1− e−Ω(log Q
P

log 1
δ ). The

RIP of I(L−1)P+1 trivially satisfies δs̃d = 0. As for the HiRIP of M̃p, we can apply [37,

Theorem 4] to (A.23) thanks to its Kronecker structure to get that, f Np and δ are as in

(A.24), then

δsd,sD ≤ δs̃d + δs̃D + δs̃dδs̃D ≤ δ . (A.25)

This completes the proof of the theorem.
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DAFT Domain

|αp,q|

0−Q L− 1 L +QQ
L− 1−Q
k

|αp,q|

D
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er
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re
ad

−Q

Q

0 L− 1
lk,min = k −Q lk,max = k +Q

Qk (|Qk| = 2Q + 1)

(a) ρk ≜ |Qk| = 2Q+ 1

DAFT Domain

|αp,q|

0−Q L− 1 L +QQ
L− 1−Q

k

|αp,q|

D
op
pl
er
sp
re
ad

−Q

Q

lk,min = 0
L− 1

lk,max = k +Q

Qk (|Qk| < 2Q + 1)

(b) ρk < 2Q+ 1

Figure A.1: Examples of interval Qk. Grid points surrounded by circles represent potential
delay-Doppler taps that may appear at the k-th position in the DAFT domain.
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DAFT Domain

|αp,q|

0−Q L− 1 L +QQ
L− 1−Q
l

|αp,q|

D
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re
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Delay spread

−Q

Q

0 L− 1

(a) for an l resulting in a whole diagonal

DAFT Domain

|αp,q|

0−Q L− 1 L +QQ
L− 1−Q

l

|αp,q|

0

D
op
pl
er
sp
re
ad

Delay spread

−Q

Q

L− 1

(b) for an l resulting in a wrapped diagonal

Figure A.2: Two examples of the set Dl. In each one of the two examples, the grid points
forming Dl are shown surrounded by red rings. (P = 1, mp = 0)
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B.1 Proof of Theorem 3.3.1

We first need the following lemma taken from [52, Theorem 2.4].

Lemma B.1.1. [52, Theorem 2.4] Let h(t) be a continuous-time zero-mean wide-sense

stationary random process with power spectrum Ph(f) =
1
B rect[Fc−B,Fc+B](f).

Denote by h = [h(0Ts) . . . h((N − 1)Ts)]
T a vector of samples acquired from h(t)

with a sampling period Ts ≤ 1
2Fc+B . Let W = BTs

2 , Uk the matrix form of the k first

(N,W )-DPSS vectors, Ef ≜ diag
(
eı2πf0 . . . eı2πf(N−1)

)
and Pk ≜ EFcTsUkU

H
k E

H
FcTs

.

Then E
[
∥h−Pkh∥22

]
= 1

2W

∑N−1
l=k λ

(N,W )
l .

In what follows, we use Lemma B.1.1 to upper bound E
[∣∣∣hl,q,n − hBEM

l,q,n

∣∣∣
2
]
. For that

sake,

we rewrite hl,q,n as the sampled version of the continuous-time signal hl,q(t) defined

as

hl,q(t) ≜
ND∑

i=1

αl,q,ie
ı2πfit, t ∈ R. (B.1)

with fi ≜
q

NTs
+ κi

NTs
. To prove that the PSD of the random process hl,q(t) has the desired
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property, we derive its autocorrelation function Rhl,q
(τ) ≜ E[hl,q(t)hl,q(t+ τ)∗] as

Rhl,q
(τ) =

ND∑

i=1

ND∑

j=1

E[αl,q,iα
∗
l,q,j ]E

[
eı2πfite−ı2πfj(t+τ)

]

=

ND∑

i=0

σ2
α E
[
e−ı2πfiτ

]
(B.2)

where the first equality is due to (B.1) and the second to fi ∼ U
([

q
NTs

− 1
2NTs

, q
NTs

+ 1
2NTs

])
,

αl,q,i ∼ CN (0, σ2
α) and the independence property of {αl,q,i}i as per Definition 3.1.1.

This gives:

Rhl,q
(τ) = ND σ2

α e
−ı2π q

NTs
τ sinc

(
τ

NTs

)
. (B.3)

The power spectral density (PSD) is thus

Phl,q
(f) ≜ F{Rhl,q

(τ)} = ND σ2
αNTs rect

((
f − q

NTs

)
NTs

)
. (B.4)

The PSD of hl,q(t) thus satisfies the condition of Lemma B.1.1 with B = 1
2NTs

and

Fc =
q

NTs

giving

E
[∣∣hl,q,n − hBEM

l,q,n

∣∣2
]
=

1

N
E
[∥∥hl,q − hBEM

l,q

∥∥2
]
=

ND σ2
α

2WN

N−1∑

b=QBEM

λ
(N,W )
b . (B.5)

Now define λ
(c)
b as the b-th eigenvalue of the prolate spheroidal wave functions (PSWF)

[53] with the bandwidth parameter c ≜ πNW . This allows us to exploit existing results

on the behavior of PSWF eigenvalues in the limit of c → π
2 (or equivalently as W tends

to zero at the rate 1
2N ) to upper bound the sum of DPSS eigenvalues λ

(N,W )
b in (B.5).

Indeed, due to [54, Theorem 2]

λ
(N,W )
b ≤ AWλ

(c)
b ,∀b = 1, . . . , N . (B.6)
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Here, AW is a function of W defined in [54, Eq. (45)] and whose image is fully included

in the interval
[
π2

8 , 2
]
. Plugging (B.6) into (B.5) and noting that 2WN = 1 lead to

E
[∣∣hl,q,n − hBEM

l,q,n

∣∣2
]
≤ ND σ2

αAW

N∑

b=QBEM

λ
(c)
b (B.7)

The right-hand side term in (B.7) can be upper bounded due to the fact that the PSWF

eigenvalues decay at least exponentially1 as b grows beyond 2πNW
π +O(log(πNW )) =

1 +O(log π
2 ). More precisely, it follows from [56, Theorem 2.5] that λ

(c)
b = O

(
e
− π2

log π
2
b
)
.

Plugging this into (B.7) results, for any ϵ > 0 and QBEM > C log 2
ϵ for sufficiently

large C, in

E
[∣∣hl,q,n − hBEM

l,q,n

∣∣2
]
<

ND σ2
αAW ϵ

2
. (B.8)

Now, note that

E

[
L−1∑

l=0

∣∣hl,n − hBEM
l,n

∣∣2
]
= E



L−1∑

l=0

∣∣∣∣∣∣

Q∑

q=−Q

Il,qe
ı2π nq

N

QBEM∑

b=1

(
hl,q,n − hBEM

l,q,n

)
∣∣∣∣∣∣

2


=

L−1∑

l=0

Q∑

q=−Q

E [Il,q]E
[∣∣hl,q,n − hBEM

l,q,n

∣∣2
]

(B.9)

Plugging (B.8) into the right-hand side of (B.10) gives

E

[
L−1∑

l=0

∣∣hl,n − hBEM
l,n

∣∣2
]
<

L−1∑

l=0

Q∑

q=−Q

E [Il,q]
ND σ2

αAW ϵ

2
≤ ϵ (B.10)

where the second inequality is due to the fact that AW ≤ 2 and that
∑L−1

l=0

∑Q
q=−Q E [Il,q] =

1
ND σ2

α
due to the power normalization condition in (3.3). This completes the proof of the

theorem.

1Actually, even super-geometric decay can be proven [55]
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B.2 Proof of Theorem 3.5.1

In what follows we use the notation hextl,q,n

(
ĥBEM
l,q

)
to designate the DPSS extrapolation

predictor defined in (3.23) to highlight its dependence on the estimated vector ĥBEM
l,q .

When ĥBEM
l,q in (3.23) is replaced with an arbitrary channel vector h, the DPSS predictor

generalizes to

hextl,q,n (h) ≜ eı2π
nq
N
(
uext
n

)T
UH

QBEM
EH

q
N︸ ︷︷ ︸

≜
(
fextQBEM

)H

h . (B.11)

For instance, hextl,q,n

(
hBEM
l,q

)
is the DPSS predictor based on the actual, not the estimated,

vector hBEM
l,q . Next, we establish the link between the DPSS extrapolation predictor and

MMSE prediction given the knowledge of the channel during the observation interval.

For that sake first note that for each l, q and any n ∈ Z, the random variable hl,q,n as de-

fined by (3.7) follows a complex symmetric Gaussian distribution CN
(
0, NDσ

2
α

)
under the

conditions of Definition 3.1.1. Moreover, the random process (hl,q,n)n∈Z is stationary and

has an auto-correlation E
[
hl,q,nh

∗
l,q,m

]
= σ2

αNDe
ı2π

(n−m)q
N

N
π(n−m) sin (

π(n−m)
N ) due to (3.7).

Similarly, hl,q ∼ CN
(
0, σ2

αNDNE q
N
ΣEH

q
N

)
and hBEM

l,q ∼ CN
(
0, σ2

αNDNE q
N
PBEMΣPBEMEH

q
N

)

with

Σ ≜

[
1

π(n−m)
sin

π(n−m)

N

]

n=0...N−1
m=0...N−1

=
[
C(N,W )
n,m

]
n=0...N−1
m=0...N−1

(B.12)

Therefore, the MMSE predictor of hl,q,n given the actual channel component hl,q is

ĥl,q,n (hl,q) = E
[
hl,q,nh

H
l,q

] (
E
[
hl,qh

H
l,q

])−1
hl,q

= eı2π
nq
N ρE q

N
Σ−1EH

q
N
hl,q . (B.13)

Here ρ ≜
[
e−ı2πmq

N C
(N,W )
n,m

]N−1

m=0
. It follows that the reduced-rank MMSE predictor ĥRR

l,q,n

of rank Q of hl,q,n given hl,q (where notation ‘RR’ stands for “reduced rank”) is [57]

ĥRR
l,q,n (hl,q) =

(
fRR
Q

)H
hl,q , (B.14)
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fRR
Q ≜ E q

N
UQdiag


 1

λ
(N,W )
1

, . . . ,
1

λ
(N,W )
Q


UH

QE
H
q
N
ρH. (B.15)

Next, we apply the triangle inequality to get

E
[∣∣∣hextl,q,n

(
ĥBEM
l,q

)
− ĥRR

l,q,n (hl,q)
∣∣∣
2
]
≤ E

[∣∣∣hextl,q,n

(
ĥBEM
l,q

)
− hextl,q,n

(
hBEM
l,q

)∣∣∣
2
]

︸ ︷︷ ︸
≜E1

+

E
[∣∣hextl,q,n

(
hBEM
l,q

)
− hextl,q,n (hl,q)

∣∣2
]

︸ ︷︷ ︸
≜E2

+E
[∣∣∣hextl,q,n (hl,q)− ĥRR

l,q,n (hl,q)
∣∣∣
2
]

︸ ︷︷ ︸
≜E3

.

(B.16)

Since limσ2
w→0 E

[∥∥∥ĥBEM
l,q − hBEM

l,q

∥∥∥
2
]
due to Assumption 3.4.1, it follows from (B.11)

by standard MSE derivations that limσ2
w→0E1 = 0. As for E2, and since hBEM

l,q =

E q
N
PBEMEH

q
N
hl,q per (3.10), we have that UH

QBEM
EH

q
N
hl,q = UH

QBEM
EH

q
N
hBEM
l,q . It follows

from (B.11) that hext
l,q,n (hl,q) = hext

l,q,n

(
hBEM
l,q

)
and hence that E2 = 0. Finally, note by

referring to (3.21), (B.11) and (B.15) that fRR
Q = f extQBEM

if Q = QBEM leading to E3 = 0.

Now, due to (3.21), hext
l,n =

∑L−1
l=0 Il,qh

ext
l,q,n. Moreover, due to the independence

conditions from Definition 3.1.1, ĥRR
l,n ≜

∑L−1
l=0 Il,qĥ

RR
l,q,n is the reduced-rank MMSE

estimate of hl,n given {hl,q}q=−Q···Q and conditioned on a given realization of Il,q. Putting

all these pieces together, it follows that limσ2
w→0

∣∣∣hextl,n − ĥRR
l,n

∣∣∣
2
. This completes the proof

of the theorem.
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