Combinatorial Optimization with Rydberg Atoms:
the Barrier of Interpretability
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The MWIS problem
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3) Embedding MWIS into UD-MWIS with Rydberg atoms

= An example of embedding scheme relies on crossing lattice graphs!?:

1)

Maximum Weighted Independent Set:
given a weighted graph, amounts to find a
set of independent (non-adjacent) vertices with
maximal weight

a) Embedding
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Unless P = NP, impossible to solve, even ap-
proximately, in polynomial time

b) Adiabatic evolution
Useful problem with industrial applications

2)  Unitary-disk (UD) graphs
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Rydberg atoms natively encode MWIS!:
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with U > 6, > 0 and n; € {0,1} indicates if
vertex 7 is selected or not
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Imperfect annealing

In 2D this only describes the class of UD

graphs, i.e. with edges between vertices sep-
arated by less than a unit distance

Embedding schemes are required to map non-
UD MWIS instances onto UD-MWIS

4)
a)

Several varying parameters: graph size & energy penalties
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Exponential decay of interpretability in embedding graphs

Low-energy DoS in a random embedding graph

Consistent behavior: exp. decay of the fraction of low d values in increasing

= Approach: we study the Hamming distance d to the nearest interpretable configuration
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b) Approximation ratio

» Link between the approximation ratio r and the energy window
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Conclusions

Two very different regimes of energies are identified:

» For ¥ < §/2, measurements outputs are easy to interpret as solutions of the initial problem

» For £ > 0/2, post-processing is exponentially hard when E increases

In practice, defects due to finite annealing time jeopardize approximate MWIS optimization with embed-
ding schemes. Our approach is expected to yield similar results for a broad class of embedding techniques

tailored for UD-MWIS optimization, integer factorization, QUBO, etc.

References
[1] H. Pichler et al., arXiv:1808.10816 (2018)

[2] M.-T. Nguyen et al., PRXQ 4, 010 16 (2023)

[3] C. de Correc, T. Ayral & C. Bertrand, coming
soon on ArXiv!




