Combinatorial Optimization with Rydberg Atoms: the Barrier of Interpretability

3

<u>C. de Correc^{1,*}</u>, T. Ayral¹, C. Bertrand¹

¹Eviden Quantum Lab, 78340 Les Clayes-sous-Bois, France * cor

* corresponding author: c.de-correc@eviden.com

) The MWIS problem

- Maximum Weighted Independent Set: given a weighted graph, amounts to find a set of independent (non-adjacent) vertices with maximal weight
- Unless P = NP, impossible to solve, even approximately, in polynomial time
- Useful problem with industrial applications

Embedding MWIS into UD-MWIS with Rydberg atoms

• An example of embedding scheme relies on crossing lattice graphs^[2]:

2) Unitary-disk (UD) graphs

Rydberg atoms natively encode MWIS^[1]:

 $H = -\sum_{i} \delta_{i} n_{i} + U \sum_{i \sim j} n_{i} n_{j}$

with $U \gg \delta_i > 0$ and $n_i \in \{0, 1\}$ indicates if vertex *i* is selected or not

- In 2D this only describes the class of UD graphs, i.e. with edges between vertices separated by less than a unit distance
- Embedding schemes are required to map non-UD MWIS instances onto UD-MWIS

• Approach: we study the Hamming distance d to the nearest interpretable configuration

4) Exponential decay of interpretability in embedding graphs^[3]

a) Low-energy DoS in a random embedding graph

b) Approximation ratio

- Several varying parameters: graph size & energy penalties
- Consistent behavior: exp. decay of the fraction of low d values in increasing energy windows (bottom panels)

• Link between the approximation ratio r and the energy window

c) Approximation by simpler graphs

Products of paths graphs reproduce the distribution of the distance d

Energy Energy Energy

0-0-0-0-0-0-0-0

5) Conclusions	6) References
Two very different regimes of energies are identified:	[1] H. Pichler et al., arXiv:1808.10816 (2018)
• For $E \leq \delta/2$, measurements outputs are easy to interpret as solutions of the initial problem	[2] MT. Nguyen et al., PRXQ 4, 010 16 (2023)
• For $E \geq \delta/2$, post-processing is exponentially hard when E increases	[3] C de Correc T Avral & C Bertrand coming
n practice, defects due to finite annealing time jeopardize approximate MWIS optimization with embed- ding schemes. Our approach is expected to yield similar results for a broad class of embedding techniques cailored for UD-MWIS optimization, integer factorization, QUBO, etc.	soon on ArXiv!